Unknown

Dataset Information

0

The Escherichia coli alkA Gene Is Activated to Alleviate Mutagenesis by an Oxidized Deoxynucleoside.


ABSTRACT: The cellular methyl donor S-adenosylmethionine (SAM) and other endo/exogenous agents methylate DNA bases non-enzymatically into products interfering with replication and transcription. An important product is 3-methyladenine (m3A), which in Escherichia coli is removed by m3A-DNA glycosylase I (Tag) and II (AlkA). The tag gene is constitutively expressed, while alkA is induced by sub-lethal concentrations of methylating agents. We previously found that AlkA exhibits activity for the reactive oxygen-induced thymine (T) lesion 5-formyluracil (fU) in vitro. Here, we provide evidence for AlkA involvement in the repair of oxidized bases by showing that the adenine (A) ⋅ T → guanine (G) ⋅ cytosine (C) mutation rate increased 10-fold in E. coli wild-type and alkA - cells exposed to 0.1 mM 5-formyl-2'-deoxyuridine (fdU) compared to a wild-type specific reduction of the mutation rate at 0.2 mM fdU, which correlated with alkA gene induction. G⋅C → A⋅T alleviation occurred without alkA induction (at 0.1 mM fdU), correlating with a much higher AlkA efficiency for fU opposite to G than for that to A. The common keto form of fU is the AlkA substrate. Mispairing with G by ionized fU is favored by its exclusion from the AlkA active site.

SUBMITTER: Grosvik K 

PROVIDER: S-EPMC7051996 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC2975202 | biostudies-literature
| S-EPMC451658 | biostudies-literature
| S-EPMC2234107 | biostudies-literature
| S-EPMC3486386 | biostudies-literature
| S-EPMC2442819 | biostudies-literature
| S-EPMC3098123 | biostudies-literature
| S-EPMC2680738 | biostudies-literature
| S-EPMC2819640 | biostudies-literature
| S-EPMC305614 | biostudies-literature
| S-EPMC2866735 | biostudies-literature