Unknown

Dataset Information

0

One-pot synthesis of a microporous organosilica-coated cisplatin nanoplatform for HIF-1-targeted combination cancer therapy.


ABSTRACT: Nanoparticle formulations have proven effective for cisplatin delivery. However, the development of a versatile nanoplatform for cisplatin-based combination cancer therapies still remains a great challenge. Methods: In this study, we developed a one-pot synthesis method for a microporous organosilica shell-coated cisplatin nanoplatform using a reverse microemulsion method, and explored its application in co-delivering acriflavine (ACF) for inhibiting hypoxia-inducible factor-1 (HIF-1). Results: The resulting nanoparticles were tunable, and they could be optimized to a monodisperse population of particles in the desired size range (40-50 nm). In addition, organic mPEG2000-silane and tetrasulfide bond-bridged organosilica were integrated into the surface and silica matrix of nanoparticles for prolonged blood circulation and tumor-selective glutathione-responsive degradation, respectively. After reaching the tumor sites, cisplatin induced cancer cell death and activated HIF-1 pathways, resulting in acquired drug resistance and tumor metastasis. To address this issue, ACF was co-loaded with cisplatin to prevent the formation of HIF-1?/? dimers and suppress HIF-1 function. Hence, the efficacy of cisplatin was improved, and cancer metastasis was inhibited. Conclusion: Both in vitro and in vivo results suggested that this core-shell nanostructured cisplatin delivery system represented a highly efficacious and promising nanoplatform for the synergistic delivery of combination therapies involving cisplatin.

SUBMITTER: Zhang X 

PROVIDER: S-EPMC7053205 | biostudies-literature | 2020

REPOSITORIES: biostudies-literature

altmetric image

Publications

One-pot synthesis of a microporous organosilica-coated cisplatin nanoplatform for HIF-1-targeted combination cancer therapy.

Zhang Xiaojuan X   He Chuanchuan C   Liu Xiaoguang X   Chen Yan Y   Zhao Pengxuan P   Chen Chen C   Yan Ruicong R   Li Minsi M   Fan Ting T   Altine Bouhari B   Yang Tan T   Lu Yao Y   Lee Robert J RJ   Gai Yongkang Y   Xiang Guangya G  

Theranostics 20200203 7


Nanoparticle formulations have proven effective for cisplatin delivery. However, the development of a versatile nanoplatform for cisplatin-based combination cancer therapies still remains a great challenge. <b>Methods</b>: In this study, we developed a one-pot synthesis method for a microporous organosilica shell-coated cisplatin nanoplatform using a reverse microemulsion method, and explored its application in co-delivering acriflavine (ACF) for inhibiting hypoxia-inducible factor-1 (HIF-1). <b  ...[more]

Similar Datasets

| S-EPMC5980201 | biostudies-other
| S-EPMC4632124 | biostudies-literature
| S-EPMC3777664 | biostudies-literature
| S-EPMC4284004 | biostudies-literature
2017-12-08 | MSV000081794 | MassIVE
| S-EPMC6644774 | biostudies-literature
| S-EPMC5529999 | biostudies-other
| S-EPMC4039422 | biostudies-literature
| S-EPMC5904172 | biostudies-literature
| S-EPMC8418149 | biostudies-literature