Unknown

Dataset Information

0

Lactobacillus rhamnosus GG Genomic and Phenotypic Stability in an Industrial Production Process.


ABSTRACT: Lactobacillus rhamnosus GG is one of the most widely marketed and studied probiotic strains. In L. rhamnosus GG, the spaCBA-srtC1 gene cluster encodes pili, which are important for some of the probiotic properties of the strain. A previous study showed that the DNA sequence of the spaCBA-srtC1 gene cluster was not present in some L. rhamnosus GG variants isolated from liquid dairy products. To examine the stability of the L. rhamnosus GG genome in an industrial production process, we sequenced the genome of samples of L. rhamnosus GG (DSM 33156) collected at specific steps of the industrial production process, including the culture collection stock, intermediate fermentations, and final freeze-dried products. We found that the L. rhamnosus GG genome sequence was unchanged throughout the production process. Consequently, the spaCBA-srtC1 gene locus was intact and fully conserved in all 31 samples examined. In addition, different production batches of L. rhamnosus GG exhibited consistent phenotypes, including the presence of pili in final freeze-dried products, and consistent characteristics in in vitro assays of probiotic properties. Our data show that L. rhamnosus GG is highly stable in this industrial production process.IMPORTANCE Lactobacillus rhamnosus GG is one of the best-studied probiotic strains. One of the well-characterized features of the strain is the pili encoded by the spaCBA-srtC1 gene cluster. These pili are involved in persistence in the gastrointestinal tract and are important for the probiotic properties of L. rhamnosus GG. Previous studies demonstrated that the L. rhamnosus GG genome can be unstable under certain conditions and can lose the spaCBA-srtC1 gene cluster. Since in vitro studies have shown that the loss of the spaCBA-srtC1 gene cluster decreases certain L. rhamnosus GG probiotic properties, we assessed both the genomic stability and phenotypic properties of L. rhamnosus GG throughout an industrial production process. We found that neither genomic nor phenotypic changes occurred in the samples. Therefore, we demonstrate that L. rhamnosus GG retains the spaCBA-srtC1 cluster and exhibits excellent genomic and phenotypic stability in the specific industrial process examined here.

SUBMITTER: Stage M 

PROVIDER: S-EPMC7054085 | biostudies-literature | 2020 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Lactobacillus rhamnosus GG Genomic and Phenotypic Stability in an Industrial Production Process.

Stage Marianne M   Wichmann Anita A   Jørgensen Mette M   Vera-Jimenéz Natalia Ivonne NI   Wielje Malue M   Nielsen Dennis Sandris DS   Sandelin Albin A   Chen Yun Y   Baker Adam A  

Applied and environmental microbiology 20200302 6


<i>Lactobacillus rhamnosus</i> GG is one of the most widely marketed and studied probiotic strains. In <i>L. rhamnosus</i> GG, the <i>spaCBA-srtC1</i> gene cluster encodes pili, which are important for some of the probiotic properties of the strain. A previous study showed that the DNA sequence of the <i>spaCBA-srtC1</i> gene cluster was not present in some <i>L. rhamnosus</i> GG variants isolated from liquid dairy products. To examine the stability of the <i>L. rhamnosus</i> GG genome in an ind  ...[more]

Similar Datasets

2020-03-02 | GSE123727 | GEO
| PRJNA509649 | ENA
| S-EPMC8612286 | biostudies-literature
| S-EPMC3623246 | biostudies-literature
2016-07-01 | PXD001201 | Pride
2011-08-01 | GSE28903 | GEO
2011-01-01 | GSE22536 | GEO
| S-EPMC3815411 | biostudies-literature
| S-EPMC2746127 | biostudies-literature
| PRJNA1068249 | ENA