Project description:Patients with nontuberculous mycobacterial lung disease (NTM-LD) have increased mortality. The impact of NTM species on the risk of mortality remains unclear, especially that of death by non-cancer causes. We conducted a retrospective cohort study from 2006 to 2018 in a tertiary-care hospital in Taiwan. We enrolled patients who fulfilled the microbiological diagnostic criteria of NTM-LD. The mortality causes within 8 years after diagnosis were identified, and the Cox proportional hazard regression was performed for risk factors of mortality. A total of 1,652 subjects with NTM-LD were included. Among them, 723 (43.8%) were infected by Mycobacterium avium complex (MAC), 408 (24.7%) by M. abscessus complex (MABC), 120 (7.3%) by Mycobacterium kansasii (MK), 304 (18.4%) by other rapid-growing mycobacteria (RGM), and 97 (5.9%) by other slow-growing mycobacteria (SGM) groups. The 8-year all-cause mortality was 45.2% for all and the highest in the MK-LD group (59.2%), followed by the MABC-LD and MAC-LD groups. The adjusted hazard ratios were 2.20 (95% confidence interval: 1.40-3.46) in the MK-LD, 1.85 (1.54-2.22) in the MABC-LD, and 1.65 (1.12-2.41) in the MAC-LD groups for all-cause mortality, compared with the SGM group. Kaplan-Meier survival curves showed that all-cause mortality, non-cancer mortality, and mortality due to chronic airway diseases were significantly correlated with NTM species (log-rank p = 0.0031, < 0.001, and 0.001, respectively). High 8-year mortality rates were found in patients with NTM-LDs according to different NTM species. Notably, the difference was significant in non-cancer mortality causes, especially in chronic airway diseases.
Project description:Postsurgical skin and soft tissue infections (SSTIs) caused by nontuberculous mycobacteria (NTM) are uncommon, indolent, difficult to treat, and often mimic pyogenic bacterial infections. Here we present 3 cases of NTM infections following placement of silicone implants for reconstructive breast surgery. These cases emphasize the importance of a high index of suspicion for NTM in patients with SSI after a prosthetic reconstruction refractory to conventional antibiotic therapy and the importance of early investigation with mycobacterial-specific diagnostics.
Project description:Osteomyelitis caused by nontuberculous mycobacteria (NTM) can have severe consequences and a poor prognosis. Physicians therefore need to be alert to this condition, especially in immunocompromised patients. Although the pathogenesis of NTM osteomyelitis is still unclear, studies in immunodeficient individuals have revealed close relationships between NTM osteomyelitis and defects associated with the interleukin-12-interferon-?-tumor necrosis factor-? axis, as well as human immunodeficiency virus infection, various immunosuppressive conditions, and diabetes mellitus. Culture and species identification from tissue biopsies or surgical debridement tissue play crucial roles in diagnosing NTM osteomyelitis. Suitable imaging examinations are also important. Adequate surgical debridement and the choice of appropriate, combined antibiotics for long-term anti-mycobacterial chemotherapy, based on in vitro drug susceptibility tests, are the main therapies for these bone infections. Bacillus Calmette-Guerin vaccination might have limited prophylactic value. The use of multiple drugs and long duration of treatment mean that the therapeutic process needs to be monitored closely to detect potential side effects. Adequate duration of anti-mycobacterial chemotherapy together with regular monitoring with blood and imaging tests are key factors determining the recovery outcome in patients with NTM osteomyelitis.
Project description:This study aimed to examine whether nontuberculous mycobacteria (NTM) inside household showerheads are identical to those in patients with NTM-pulmonary disease (PD) since household water is one of the potential NTM sources. Samples were obtained from 32 household showerheads of patients with NTM-PD recruited through the Pulmonary Outpatient Department at the Severance Hospital between October 2018 and October 2019. All isolates from patients with NTM-PD were diagnosed using a reverse-hybridization line probe assay based on the ropB gene. To determine the mycobacterial compositions, the washing fluids were collected and investigated using multiplex polymerase chain reaction assay and NTM culture; suspected microbial isolates in these fluids and culture were identified using sequencing analysis of 16S rRNA gene. NTM species causing the PD in the patients were Mycobacterium avium, M. intracellulare, M. abscessus, M. massiliense, and M. fortuitum complex. The mycobacteria isolated from the showerhead were M. lentiflavum, M. gordonae, M. triplex, M. phocaicum, M. mucogenicum, M. florentinum, M. gilvum, M. llatzerense, and M. peregrinum. However, the species identified in the showerheads did not match those of the patients. Despite NTM species in the showerheads, clinical implications in the main pathogenesis associated with the disease in the patients studied were not elucidated.
Project description:Mycobacterium tuberculosis and Mycobacterium leprae have remained, for many years, the primary species of the genus Mycobacterium of clinical and microbiological interest. The other members of the genus, referred to as nontuberculous mycobacteria (NTM), have long been underinvestigated. In the last decades, however, the number of reports linking various NTM species with human diseases has steadily increased and treatment difficulties have emerged. Despite the availability of whole genome sequencing technologies, limited effort has been devoted to the genetic characterization of NTM species. As a consequence, the taxonomic and phylogenetic structure of the genus remains unsettled and genomic information is lacking to support the identification of these organisms in a clinical setting. In this work, we widen the knowledge of NTMs by reconstructing and analyzing the genomes of 41 previously uncharacterized NTM species. We provide the first comprehensive characterization of the genomic diversity of NTMs and open new venues for the clinical identification of opportunistic pathogens from this genus.
Project description:The diagnosis of pulmonary non-tuberculous mycobacterial disease (pNTM) is dependent on the isolation of NTM in culture, which is prone to overgrowth and contamination and may not capture the diversity of mycobacteria present, including rare or unidentified species. This study aimed to develop a culture independent method of detecting and identifying mycobacteria from sputum samples using partial sequencing of the hsp65 gene. DNA was extracted from sputum samples from subjects with pNTM and disease controls. Multiplexed partial sequencing of the hsp65 gene was performed using the Illumina MiSeq and custom primers. A reference database of hsp65 sequences was created for taxonomy assignment. Sequencing results were obtained from 42 subjects (31 cases, 11 controls). Mycobacterial sequences were identified in all subjects. In 90.5% of samples more than one species was found (median 5.5). The species isolated in culture was detected by sequencing in 81% of subjects and was the most abundant species in 62%. The sequencing of NTM from clinical samples reveals a far greater diversity than conventional culture and suggests NTM are present as communities rather than a single species. NTM were found to be present even in the absence of isolation in culture or clinical disease.
Project description:We measured annual prevalence of microbiologically defined nontuberculous mycobacterial lung disease in Ontario, Canada. Mycobacterium avium prevalence was 13 cases/100,000 persons in 2020, a 2.5-fold increase from 2010, indicating a large increase in true M. avium lung disease. During the same period, M. xenopi decreased nearly 50%, to 0.84 cases/100,000 persons.