Unknown

Dataset Information

0

Largely Enhanced Ferromagnetism in Bare CuO Nanoparticles by a Small Size Effect.


ABSTRACT: Magnetic properties of fully oxygenated bare CuO nanoparticles have been investigated using magnetization, X-ray diffraction, neutron diffraction, and Raman scattering measurements. The Langevin field profile is clearly revealed in the isothermal magnetization of 8.8 nm CuO nanoparticle assembly even at 300 K, revealing a 172 times enhancement of the ferromagnetic responses over that of bulk CuO. Surface magnetization of 8.8 nm CuO reaches 18% of the core magnetization. The Cu spins in 8.8 nm CuO order below 400 K, which is 1.7 times higher than the 231 K observed in bulk CuO. A relatively simple magnetic structure that may be indexed using a modulation vector of (0.2, 0, 0.2) was found for the 8.8 nm CuO, but no magnetic incommensurability was observed in bulk CuO. The Cu spins in 8.8 nm CuO form spin density waves with length scales of 5 chemical unit cells long along the crystallographic a- and c-axis directions. Considerable amounts of electronic charge shift from around the Cu lattice sites toward the interconnecting regions of two neighboring Cu-Cu ions, resulting in a stronger ferromagnetic direct exchange interaction for the neighboring Cu spins in 8.8 nm CuO.

SUBMITTER: Batsaikhan E 

PROVIDER: S-EPMC7057320 | biostudies-literature | 2020 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Largely Enhanced Ferromagnetism in Bare CuO Nanoparticles by a Small Size Effect.

Batsaikhan Erdembayalag E   Lee Chi-Hung CH   Hsu Han H   Wu Chun-Ming CM   Peng Jen-Chih JC   Ma Ma-Hsuan MH   Deleg Sangaa S   Li Wen-Hsien WH  

ACS omega 20200221 8


Magnetic properties of fully oxygenated bare CuO nanoparticles have been investigated using magnetization, X-ray diffraction, neutron diffraction, and Raman scattering measurements. The Langevin field profile is clearly revealed in the isothermal magnetization of 8.8 nm CuO nanoparticle assembly even at 300 K, revealing a 172 times enhancement of the ferromagnetic responses over that of bulk CuO. Surface magnetization of 8.8 nm CuO reaches 18% of the core magnetization. The Cu spins in 8.8 nm Cu  ...[more]

Similar Datasets

2014-03-01 | GSE54738 | GEO
2014-03-01 | E-GEOD-54738 | biostudies-arrayexpress
2013-03-04 | GSE41966 | GEO
| S-EPMC4805117 | biostudies-literature
| S-EPMC5512832 | biostudies-other
2013-03-04 | E-GEOD-41966 | biostudies-arrayexpress
2014-03-01 | GSE54739 | GEO
2014-03-01 | E-GEOD-54739 | biostudies-arrayexpress
2019-05-01 | GSE127773 | GEO
| S-EPMC5341124 | biostudies-literature