DFT calculations of the structure and stability of copper clusters on MoS2.
Ontology highlight
ABSTRACT: Layered materials, such as MoS2, are being intensely studied due to their interesting properties and wide variety of potential applications. These materials are also interesting as supports for low-dimensional metals for catalysis, while recent work has shown increased interest in using 2D materials in the electronics industry as a Cu diffusion barrier in semiconductor device interconnects. The interaction between different metal structures and MoS2 monolayers is therefore of significant importance and first-principles simulations can probe aspects of this interaction not easily accessible to experiment. Previous theoretical studies have focused particularly on the adsorption of a range of metallic elements, including first-row transition metals, as well as Ag and Au. However, most studies have examined single-atom adsorption or adsorbed nanoparticles of noble metals. This means there is a knowledge gap in terms of thin film nucleation on 2D materials. To begin addressing this issue, we present in this paper a first-principles density functional theory (DFT) study of the adsorption of small Cu n (n = 1-4) structures on 2D MoS2 as a model system. We find on a perfect MoS2 monolayer that a single Cu atom prefers an adsorption site above the Mo atom. With increasing nanocluster size the nanocluster binds more strongly when Cu atoms adsorb atop the S atoms. Stability is driven by the number of Cu-Cu interactions and the distance between adsorption sites, with no obvious preference towards 2D or 3D structures. The introduction of a single S vacancy in the monolayer enhances the copper binding energy, although some Cu n nanoclusters are actually unstable. The effect of the vacancy is localised around the vacancy site. Finally, on both the pristine and the defective MoS2 monolayer, the density-of-states analysis shows that the adsorption of Cu introduces new electronic states as a result of partial Cu oxidation, but the metallic character of Cu nanoclusters is preserved.
SUBMITTER: Nies CL
PROVIDER: S-EPMC7059439 | biostudies-literature | 2020
REPOSITORIES: biostudies-literature
ACCESS DATA