Project description:BackgroundGreen tea is one of the most popular beverages worldwide. This review summarizes the beneficial effects of green tea on cancer prevention.MethodsElectronic databases, including PubMed (1966-2008), the Cochrane Library (Issue 1, 2008) and Chinese Biomedical Database (1978-2008) with supplement of relevant websites, were searched. There was no language restriction. The searches ended at March 2008. We included randomized and non-randomized clinical trials, epidemiological studies (cohort and case-control) and a meta-analysis. We excluded case series, case reports, in vitro and animal studies. Outcomes were measured with estimation of relative risk, hazard or odd ratios, with 95% confidence interval.ResultsForty-three epidemiological studies, four randomized trials and one meta-analysis were identified. The overall quality of these studies was evaluated as good or moderate. While some evidence suggests that green tea has beneficial effects on gastrointestinal cancers, the findings are not consistent.ConclusionGreen tea may have beneficial effects on cancer prevention. Further studies such as large and long term cohort studies and clinical trials are warranted.
Project description:Tea green leafhopper [Empoasca (Matsumurasca) onukii Matsuda] is one of the most devastating pests of tea plants (Camellia sinensis), greatly impacting tea yield and quality. A thorough understanding of the interactions between the tea green leafhopper and the tea plant would facilitate a better pest management. To gain more insights into the molecular and biochemical mechanisms behind their interactions, a combined analysis of the global transcriptome and metabolome reconfiguration of the tea plant challenged with tea green leafhoppers was performed for the first time, complemented with phytohormone analysis. Non-targeted metabolomics analysis by ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-QTOF MS), together with quantifications by ultra-performance liquid chromatography triple quadrupole mass spectrometry (UPLC-QqQ MS), revealed a marked accumulation of various flavonoid compounds and glycosidically bound volatiles but a great reduction in the level of amino acids and glutathione upon leaf herbivory. RNA-Seq data analysis showed a clear modulation of processes related to plant defense. Genes pertaining to the biosynthesis of phenylpropanoids and flavonoids, plant-pathogen interactions, and the biosynthesis of cuticle wax were significantly up-regulated. In particular, the transcript level for a CER1 homolog involved in cuticular wax alkane formation was most drastically elevated and an increase in C29 alkane levels in tea leaf waxes was observed. The tea green leafhopper attack triggered a significant increase in salicylic acid (SA) and a minor increase in jasmonic acid (JA) in infested tea leaves. Moreover, transcription factors (TFs) constitute a large portion of differentially expressed genes, with several TFs families likely involved in SA and JA signaling being significantly induced by tea green leafhopper feeding. This study presents a valuable resource for uncovering insect-induced genes and metabolites, which can potentially be used to enhance insect resistance in tea plants.
Project description:Metabolomics has emerged as an important analytical technique for multiple applications. The value of information obtained from metabolomics analysis depends on the degree to which the entire metabolome is present and the reliability of sample treatment to ensure reproducibility across the study. The purpose of this study was to compare methods of preparing complex botanical extract samples prior to metabolomics profiling. Two extraction methodologies, accelerated solvent extraction and a conventional solvent maceration, were compared using commercial green tea [Camellia sinensis (L.) Kuntze (Theaceae)] products as a test case. The accelerated solvent protocol was first evaluated to ascertain critical factors influencing extraction using a D-optimal experimental design study. The accelerated solvent and conventional extraction methods yielded similar metabolite profiles for the green tea samples studied. The accelerated solvent extraction yielded higher total amounts of extracted catechins, was more reproducible, and required less active bench time to prepare the samples. This study demonstrates the effectiveness of accelerated solvent as an efficient methodology for metabolomics studies.
Project description:Tea (Camellia sinensis (L.) O. Kuntze) is an important non-alcoholic commercial beverage crop. Tea tree is a perennial plant, and winter dormancy is its part of biological adaptation to environmental changes. We recently discovered a novel tea tree cultivar that can generate tender shoots in winter, but the regulatory mechanism of this ever-growing tender shoot development in winter is not clear. In this study, we conducted a proteomic analysis for identification of key genes and proteins differentially expressed between the winter and spring tender shoots, to explore the putative regulatory mechanisms and physiological basis of its ever-growing character during winter.
Project description:The effect of Camellia sinensis (green tea) on the growth of Acanthamoeba castellanii trophozoites was examined using a microplate based-Sulforhodamine B (SRB) assay. C. sinensis hot and cold brews at 75% and 100% concentrations significantly inhibited the growth of trophozoites. We also examined the structural alterations in C. sinensis-treated trophozoites using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). This analysis showed that C. sinensis compromised the cell membrane integrity and caused progressive destruction of trophozoites. C. sinensis also significantly inhibited the parasite's ability to form cysts in a dose-dependent manner and reduced the rate of excystation from cysts to trophozoites. C. sinensis exhibited low cytotoxic effects on primary corneal stromal cells. However, cytotoxicity was more pronounced in SV40-immortalized corneal epithelial cells. Chromatographic analysis showed that both hot and cold C. sinensis brews contained the same number and type of chemical compounds. This work demonstrated that C. sinensis has anti-acanthamoebic activity against trophozoite and cystic forms of A. castellanii. Further studies are warranted to identify the exact substances in C. sinensis that have the most potent anti-acanthamoebic effect.
Project description:1. Methods for the separation and determination of the polyphenolic components of the tea plant by thin-layer chromatography and colorimetric reactions have been devised. 2. High concentrations of catechins, flavonols and depsides were found to be restricted to the young vegetative and floral shoots, whereas leucoanthocyanins or flavylogens were characteristic of the more bulky axial tissues of the plant. 3. In the young shoots cell growth was correlated with an increasing degree of flavonoid B-ring hydroxylation. 4. Maximal flavylogen concentrations occurred in the outer protective layers of stem and of seed coat. 5. Mature leaves were shown to contain derivatives of the flavones apigenin and luteolin. 6. Developing seedlings showed a steady increase in polyphenol complexity; flavylogens were concentrated at shoot and root apices and accumulated at the stem base. 7. It is postulated that the flavanols (leucoanthocyanins and catechins), because they can co-polymerize, are of use to the plant for protection of wood and bark against infection and decay.
Project description:Green tea (GT), through its antioxidant properties, may be useful to treat or prevent human diseases. Because several lines of evidence suggest that oxidative stress contributes to the pathogenesis of diabetic nephropathy, we tested the hypothesis that GT prevents diabetes and hypertension-related renal oxidative stress, attenuating renal injury. Spontaneously hypertensive rats (SHR) with streptozotocin-induced diabetes and nondiabetic SHR were treated daily with tap water or freshly prepared GT (13.3 g/L). After 12 wk, the systolic blood pressure did not differ between treated and untreated nondiabetic or diabetic rats. However, body weight was less (P < 0.05) and glycemia was greater in diabetic SHR rats than in nondiabetic rats. Renal oxidative stress variables such as 8-hydroxy-2'-deoxyguanosine (8-OHdG) and nitrotyrosine expression, NADPH oxidase-dependent superoxide generation, and the expression of renal cortex Nox4 were greater (P < 0.05) in diabetic rats that received water (DW) than in nondiabetic rats that received water (CW). The 8-OHdG and NADPH oxidase-dependent superoxide generation were significantly less in rats treated with GT. Nitrotyrosine and Nox4 expression were significantly less in diabetic rats that received GT (DGT) than in DW. Likewise, the indices of renal injury, albuminuria, and renal expression of collagen IV were significantly greater in DW than in CW. These differences were significantly less in DGT than in DW. GT reestablished the redox state and reduced the indicators of nephropathy without altering glycemia and blood pressure levels in diabetic SHR. These findings suggest that the consumption of GT may ameliorate nephropathy in diabetic hypertensive patients.
Project description:Tea (Camellia sinensis) cultivars with green leaves are the most widely used for making tea. Recently, tea mutants with white or yellow young shoots have attracted increasing interest as raw materials for making "high-quality" tea products. Albino teas are generallycharacterized as having metabolites of relatively high amino acid content and lower catechin content. However, little is known about aroma compounds in albino tea leaves. Herein, we compared original normal leaves (green) and light-sensitive albino leaves (yellow) of cv. Yinghong No. 9. GC-MS was employed to analyze endogenous tea aroma compounds and related precursors. Quantitative real time PCR was used to measure expression levels of genes involved in biosyntheses of tea aromas.The total contents of most endogenous free tea aromas, including aroma fatty acid derivatives, aroma terpenes, and aroma phenylpropanoids/benzenoids, and their glycosidically bound aroma compounds, were lower in yellow leaves than in green leaves. The content of the key precursor geranyl diphosphate (GDP) and expression levels of key synthetic genes involved in the formation of linalool, a major aroma compound in cv. Yinghong No. 9, were investigated. Linalool content was lower in albino-induced yellow leaves, which was due to the lower GDP content compared with normal green leaves.
Project description:The tea plant (Camellia sinensis) presents an excellent system to study evolution and diversification of the numerous classes, types and variable contents of specialized metabolites. Here, we investigate the relationship among C. sinensis phylogenetic groups and specialized metabolites using transcriptomic and metabolomic data on the fresh leaves collected from 136 representative tea accessions in China. We obtain 925,854 high-quality single-nucleotide polymorphisms (SNPs) enabling the refined grouping of the sampled tea accessions into five major clades. Untargeted metabolomic analyses detect 129 and 199 annotated metabolites that are differentially accumulated in different tea groups in positive and negative ionization modes, respectively. Each phylogenetic group contains signature metabolites. In particular, CSA tea accessions are featured with high accumulation of diverse classes of flavonoid compounds, such as flavanols, flavonol mono-/di-glycosides, proanthocyanidin dimers, and phenolic acids. Our results provide insights into the genetic and metabolite diversity and are useful for accelerated tea plant breeding.