Project description:The association between a common PRSS1-PRSS2 haplotype and alcoholic chronic pancreatitis (ACP), which was revealed by the first genome-wide association study of chronic pancreatitis (CP), has been consistently replicated. However, the association with non-ACP (NACP) has been controversial. Herein, we sought to clarify this basic issue by means of an allele-based meta-analysis of currently available studies. We then used studies informative for genotype distribution to explore the biological mechanisms underlying the association data and to test for gene-environment interaction between the risk haplotype and alcohol consumption by means of a re-analysis. A literature search was conducted to identify eligible studies. A meta-analysis was performed using the Review Manager software. The association between the risk genotypes and NACP or ACP was tested for the best-fitting genetic model. Gene-environment interaction was estimated by both case-only and multinomial approaches. Five and eight studies were employed for the meta-analysis of ACP and NACP findings, respectively. The risk allele was significantly associated with both ACP (pooled odds ratio (OR) 1.67, 95% confidence interval (CI) 1.56-1.78; p < 0.00001) and NACP (pooled OR 1.28, 95% CI 1.17-1.40; p < 0.00001). Consistent with a dosage effect of the risk allele on PRSS1/PRSS2 mRNA expression in human pancreatic tissue, both ACP and NACP association data were best explained by an additive genetic model. Finally, the risk haplotype was found to interact synergistically with alcohol consumption.
Project description:Pancreatitis is a complex, progressively destructive inflammatory disorder. Alcohol was long thought to be the primary causative agent, but genetic contributions have been of interest since the discovery that rare PRSS1, CFTR and SPINK1 variants were associated with pancreatitis risk. We now report two associations at genome-wide significance identified and replicated at PRSS1-PRSS2 (P < 1 × 10(-12)) and X-linked CLDN2 (P < 1 × 10(-21)) through a two-stage genome-wide study (stage 1: 676 cases and 4,507 controls; stage 2: 910 cases and 4,170 controls). The PRSS1 variant likely affects disease susceptibility by altering expression of the primary trypsinogen gene. The CLDN2 risk allele is associated with atypical localization of claudin-2 in pancreatic acinar cells. The homozygous (or hemizygous in males) CLDN2 genotype confers the greatest risk, and its alleles interact with alcohol consumption to amplify risk. These results could partially explain the high frequency of alcohol-related pancreatitis in men (male hemizygote frequency is 0.26, whereas female homozygote frequency is 0.07).
Project description:Gene conversion--the substitution of genetic material from another gene--is recognized as the underlying cause of a growing number of genetic diseases. While in most cases conversion takes place between a normal gene and its pseudogene, here we report an occurrence of disease-associated gene conversion between two functional genes. Chronic pancreatitis in childhood is frequently associated with mutations of the cationic trypsinogen gene (serine protease 1; PRSS1). We have analyzed PRSS1 in 1106 patients with chronic pancreatitis, and identified a novel conversion event affecting exon 2 and the subsequent intron. The recombination replaced at least 289 nucleotides with the paralogous sequence from the anionic trypsinogen gene (serine protease 2; PRSS2), and resulted in the PRSS1 mutations c.86A > T and c.161A > G, causing the amino acid substitutions N29I and N54S, respectively. Analysis of the recombinant N29I-N54S double mutant cationic trypsinogen revealed increased autocatalytic activation, which was solely due to the N29I mutation. In conclusion, we have demonstrated that gene conversion between two functional paralogous trypsinogen genes can occur and cause genetically determined chronic pancreatitis.
Project description:Background and Aim:The risks of post-ERCP pancreatitis (PEP) are identified as patient- and procedure-related factors. However, the genetic contribution for PEP is still unclear. Recent data show that the polymorphisms of PRSS1-PRSS2 (rs10273639) and MORC4 (rs12688220) are associated with recurrent acute pancreatitis and chronic pancreatitis. We aim to evaluate the association between these polymorphisms and post-ERCP pancreatitis in order to improve better prognosis and better care for these patients. Methods:This is a retrospective, case-control study which includes 49 cases and 97 controls that are age-, procedure-, and risk of PEP-matched with the cases in 1?:?2 fashion. The PEP was diagnosed and graded for severity according to the standard consensus, and the risk factors of PEP were identified according to the ESGE guideline. Polymorphisms at rs10273639 and rs12688220 were evaluated by TaqMan technique and were identified in 133 (40 cases and 93 controls) and 146 patients, respectively. Results:The demographic data between 2 groups are not significantly different. The genotype frequencies of PRSS1-PRSS2 (TT, TC, and CC) are 26, 13, and 1 vs. 67, 25, and 1 in cases and controls, respectively (p = 0.642). The genotype frequencies of MORC4 in female (TT, TC, and CC) are 8, 23, and 5 vs. 12, 26, and 21 in cases and controls, respectively (p = 0.071). The genotype frequencies of MORC4 in male (T and C) are 5 and 8 vs. 21 and 17 in cases and controls, respectively (p = 0.468). The allelic frequencies of MORC4 in combination of both genders (T, C) are 44 and 41 vs. 71 and 84 in cases and control, respectively (p = 0.431). In PEP cases, the allelic frequencies of PRSS1-PRSS2 (T and C) are 59 and 13 vs. 6 and 2 in mild and moderate/severe cases, respectively (p = 0.633). The allelic frequencies of MORC4 (T and C) are 38 and 39 vs. 4 and 4 in mild and moderate/severe cases, respectively (p = 0.972). Conclusion:Polymorphisms at PRSS1-PRSS2 and MORC4 are not associated with the risk or severity of post-ERCP pancreatitis.
Project description:Variations in the serine protease 1 (PRSS1) gene encoding human cationic trypsinogen have been conclusively associated with autosomal dominant hereditary pancreatitis and sporadic nonalcoholic chronic pancreatitis. Most high-penetrance PRSS1 variants increase intrapancreatic trypsin activity by stimulating trypsinogen autoactivation and/or by inhibiting chymotrypsin C-dependent trypsinogen degradation. Alternatively, some PRSS1 variants can cause trypsinogen misfolding, which results in intracellular retention and degradation with consequent endoplasmic reticulum stress. However, not all PRSS1 variants are pathogenic, and clinical relevance of rare variants is often difficult to ascertain. Here we review the PRSS1 variants published since 1996 and discuss their functional properties and role in chronic pancreatitis.
Project description:Ten years ago, the groundwork for the discovery of the genetic basis of chronic pancreatitis was laid by linkage analyses of large kindreds with autosomal dominant hereditary chronic pancreatitis. Subsequent candidate gene sequencing of the 7q35 chromosome region revealed a strong association of the c.365G > A (p.R122 H) mutation of the PRSS1 gene encoding cationic trypsinogen with hereditary pancreatitis. In the following years, further mutations of this gene were discovered in patients with hereditary or idiopathic chronic pancreatitis. In vitro the mutations increase autocatalytic conversion of trypsinogen to active trypsin and thus probably cause premature, intrapancreatic trypsinogen activation in vivo. The clinical presentation is highly variable, but most affected mutation carriers have relatively mild disease. In this review, we summarize the current knowledge on trypsinogen mutations and their role in pancreatic diseases.
Project description:Chronic pancreatitis is a common inflammatory disease of the pancreas. Mutations in the genes encoding cationic trypsinogen (PRSS1) and the pancreatic secretory trypsin inhibitor (SPINK1) are associated with chronic pancreatitis. Because increased proteolytic activity owing to mutated PRSS1 enhances the risk for chronic pancreatitis, mutations in the gene encoding anionic trypsinogen (PRSS2) may also predispose to disease. Here we analyzed PRSS2 in individuals with chronic pancreatitis and controls and found, to our surprise, that a variant of codon 191 (G191R) is overrepresented in control subjects: G191R was present in 220/6,459 (3.4%) controls but in only 32/2,466 (1.3%) affected individuals (odds ratio 0.37; P = 1.1 x 10(-8)). Upon activation by enterokinase or trypsin, purified recombinant G191R protein showed a complete loss of trypsin activity owing to the introduction of a new tryptic cleavage site that renders the enzyme hypersensitive to autocatalytic proteolysis. In conclusion, the G191R variant of PRSS2 mitigates intrapancreatic trypsin activity and thereby protects against chronic pancreatitis.
Project description:Mutations in the PRSS1 (serine protease 1) gene encoding human cationic trypsinogen cause hereditary pancreatitis or may be associated with sporadic chronic pancreatitis. The mutations exert their pathogenic effect either by increasing intra-pancreatic trypsinogen activation (trypsin pathway) or by causing proenzyme misfolding and endoplasmic reticulum stress (misfolding pathway). Here we report a novel heterozygous c.568G>A (p.Glu190Lys) variant identified in a case with chronic pancreatitis. The parents of the index patient had no history of pancreatitis but were unavailable for genetic testing. Functional characterization revealed 2.5-fold increased autoactivation of the mutant trypsinogen relative to wild type. Unlike many other clinically relevant PRSS1 mutations, p.Glu190Lys did not alter the chymotrypsin C (CTRC)-dependent degradation of trypsinogen nor did it increase CTRC-mediated processing of the trypsinogen activation peptide. Cellular secretion of the mutant protein was unchanged indicating normal folding behavior. Based on the genetic and functional evidence, we classify the p.Glu190Lys PRSS1 variant as likely pathogenic, which stimulates autoactivation of cationic trypsinogen independently of CTRC.