Genetic and pharmacological targeting of A2a receptor improves function of anti-mesothelin CAR T cells.
Ontology highlight
ABSTRACT: BACKGROUND:CAR T cell-based therapies have shown promising results in hematological malignancies. Results of CAR T cell projects in solid tumors have been less impressive, and factors including lack of targetable antigens and immunosuppressive tumor microenvironment (TME) have been suggested as culprits. Adenosine, a metabolite which is highly produced in TME, is known to mediate the suppression of anti-tumor T cell responses via binding and signaling through adenosine 2a receptor (A2aR). METHODS:In this study, the expression of A2aR and the effects of its activation on the function of fully human anti-mesothelin CAR T cells (MSLN-CAR T), were analyzed. Afterwards, the molecular and pharmacological means to overcome the inhibitory effects of A2aR signaling on CAR T cell function were used. This was performed by targeting A2aR expression in MSLN-CAR T cells using various anti-A2aR shRNA sequences embedded in the CAR vector and an A2aR pharmacological antagonist, SCH-58261. Statistical analyses were performed Prism 7 software. RESULTS:Our experiments showed significant A2aR upregulation on T cells during the CAR T cell production procedure (cell activation and transduction). Activation of adenosine signaling using adenosine analog led to the suppression of all major anti-tumor functions in MSLN-CAR T cells. Interestingly, CAR T cells that carried the anti-A2aR shRNA sequences were resistant to the inhibitory effects of adenosine signaling. Pharmacological inhibition of A2aR reversed the reduction in CAR T cell proliferation and cytokine response caused by the adenosine analog; however, it failed to rescue the cytotoxic function of the cells. CONCLUSION:Altogether, our results indicate that mitigating A2aR signaling by genetic targeting of the receptor might be a promising approach in improving CAR T cell function in an unreceptive microenvironment and could potentially improve the outcome of treatment in clinical settings.
SUBMITTER: Masoumi E
PROVIDER: S-EPMC7063771 | biostudies-literature | 2020 Mar
REPOSITORIES: biostudies-literature
ACCESS DATA