Unknown

Dataset Information

0

Near-Infrared-Based Cerebral Oximetry for Prediction of Severe Acute Kidney Injury in Critically Ill Children After Cardiac Surgery.


ABSTRACT: Cerebral oximetry by near-infrared spectroscopy is used frequently in critically ill children but guidelines on its use for decision making in the PICU are lacking. We investigated cerebral near-infrared spectroscopy oximetry in its ability to predict severe acute kidney injury after pediatric cardiac surgery and assessed its additional predictive value to routinely collected data. Design:Prospective observational study. The cerebral oximeter was blinded to clinicians. Setting:Twelve-bed tertiary PICU, University Hospitals Leuven, Belgium, between October 2012 and November 2015. Patients:Critically ill children with congenital heart disease, younger than 12 years old, were monitored with cerebral near-infrared spectroscopy oximetry from PICU admission until they were successfully weaned off mechanical ventilation. Interventions:None. Measurements and Main Results:The primary outcome was prediction of severe acute kidney injury 6 hours before its occurrence during the first week of intensive care. Near-infrared spectroscopy-derived predictors and routinely collected clinical data were compared and combined to assess added predictive value. Of the 156 children included in the analysis, 55 (35%) developed severe acute kidney injury. The most discriminant near-infrared spectroscopy-derived predictor was near-infrared spectroscopy variability (area under the receiver operating characteristic curve, 0.68; 95% CI, 0.67-0.68), but was outperformed by a clinical model including baseline serum creatinine, cyanotic cardiopathy pre-surgery, blood pressure, and heart frequency (area under the receiver operating characteristic curve, 0.75; 95% CI, 0.75-0.75; p < 0.001). Combining clinical and near-infrared spectroscopy information improved model performance (area under the receiver operating characteristic curve, 0.79; 95% CI, 0.79-0.80; p < 0.001). Conclusions:After pediatric cardiac surgery, near-infrared spectroscopy variability combined with clinical information improved discrimination for acute kidney injury. Future studies are required to identify whether supplementary, timely clinical interventions at the bedside, based on near-infrared spectroscopy variability analysis, could improve outcome.

SUBMITTER: Flechet M 

PROVIDER: S-EPMC7063924 | biostudies-literature | 2019 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Near-Infrared-Based Cerebral Oximetry for Prediction of Severe Acute Kidney Injury in Critically Ill Children After Cardiac Surgery.

Flechet Marine M   Güiza Fabian F   Scharlaeken Isabelle I   Vlasselaers Dirk D   Desmet Lars L   Van den Berghe Greet G   Meyfroidt Geert G  

Critical care explorations 20191210 12


Cerebral oximetry by near-infrared spectroscopy is used frequently in critically ill children but guidelines on its use for decision making in the PICU are lacking. We investigated cerebral near-infrared spectroscopy oximetry in its ability to predict severe acute kidney injury after pediatric cardiac surgery and assessed its additional predictive value to routinely collected data.<h4>Design</h4>Prospective observational study. The cerebral oximeter was blinded to clinicians.<h4>Setting</h4>Twel  ...[more]

Similar Datasets

| S-EPMC6497723 | biostudies-literature
| S-EPMC4618048 | biostudies-literature
| S-EPMC4283997 | biostudies-literature
| S-EPMC7776310 | biostudies-literature
| S-EPMC9317651 | biostudies-literature
| S-EPMC7080680 | biostudies-literature
| S-EPMC7908639 | biostudies-literature
| S-EPMC5595187 | biostudies-literature
| S-EPMC8101474 | biostudies-literature
| S-EPMC6992767 | biostudies-literature