Unknown

Dataset Information

0

Effects of auxin derivatives on phenotypic plasticity and stress tolerance in five species of the green alga Desmodesmus (Chlorophyceae, Chlorophyta).


ABSTRACT: Green microalgae of the genus Desmodesmus are characterized by a high degree of phenotypic plasticity (i.e. colony morphology), allowing them to be truly cosmopolitan and withstand environmental fluctuations. This flexibility enables Desmodesmus to produce a phenotype-environment match across a range of environments broader compared to algae with more fixed phenotypes. Indoles and their derivatives are a well-known crucial class of heterocyclic compounds and are widespread in different species of plants, animals, and microorganisms. Indole-3-acetic acid (IAA) is the most common, naturally occurring plant hormone of the auxin class. IAA may behave as a signaling molecule in microorganisms, and the physiological cues of IAA may also trigger phenotypic plasticity responses in Desmodesmus. In this study, we demonstrated that the changes in colonial morphs (cells per coenobium) of five species of the green alga Desmodesmus were specific to IAA but not to the chemically more stable synthetic auxins, naphthalene-1-acetic acid and 2,4-dichlorophenoxyacetic acid. Moreover, inhibitors of auxin biosynthesis and polar auxin transport inhibited cell division. Notably, different algal species (even different intraspecific strains) exhibited phenotypic plasticity different to that correlated to IAA. Thus, the plasticity involving individual-level heterogeneity in morphological characteristics may be crucial for microalgae to adapt to changing or novel conditions, and IAA treatment potentially increases the tolerance of Desmodesmus algae to several stress conditions. In summary, our results provide circumstantial evidence for the hypothesized role of IAA as a diffusible signal in the communication between the microalga and microorganisms. This information is crucial for elucidation of the role of plant hormones in plankton ecology.

SUBMITTER: Lin WJ 

PROVIDER: S-EPMC7067201 | biostudies-literature | 2020

REPOSITORIES: biostudies-literature

altmetric image

Publications

Effects of auxin derivatives on phenotypic plasticity and stress tolerance in five species of the green alga <i>Desmodesmus</i> (Chlorophyceae, Chlorophyta).

Lin Wei-Jiun WJ   Ho Han-Chen HC   Chu Sheng-Chang SC   Chou Jui-Yu JY  

PeerJ 20200309


Green microalgae of the genus <i>Desmodesmus</i> are characterized by a high degree of phenotypic plasticity (i.e. colony morphology), allowing them to be truly cosmopolitan and withstand environmental fluctuations. This flexibility enables <i>Desmodesmus</i> to produce a phenotype-environment match across a range of environments broader compared to algae with more fixed phenotypes. Indoles and their derivatives are a well-known crucial class of heterocyclic compounds and are widespread in diffe  ...[more]

Similar Datasets

| S-EPMC4802548 | biostudies-literature
| S-EPMC6035231 | biostudies-literature
| S-EPMC6813381 | biostudies-literature
| S-EPMC2997540 | biostudies-literature
| S-EPMC5088586 | biostudies-literature
| S-EPMC6971069 | biostudies-literature
| S-EPMC7320567 | biostudies-literature
| PRJNA832740 | ENA
| S-EPMC4309186 | biostudies-literature
| S-EPMC3138424 | biostudies-literature