Unknown

Dataset Information

0

Augmenting Vacuolar H+-ATPase Function Prevents Cardiomyocytes from Lipid-Overload Induced Dysfunction.


ABSTRACT: The diabetic heart is characterized by a shift in substrate utilization from glucose to lipids, which may ultimately lead to contractile dysfunction. This substrate shift is facilitated by increased translocation of lipid transporter CD36 (SR-B2) from endosomes to the sarcolemma resulting in increased lipid uptake. We previously showed that endosomal retention of CD36 is dependent on the proper functioning of vacuolar H+-ATPase (v-ATPase). Excess lipids trigger CD36 translocation through inhibition of v-ATPase function. Conversely, in yeast, glucose availability is known to enhance v-ATPase function, allowing us to hypothesize that glucose availability, via v-ATPase, may internalize CD36 and restore contractile function in lipid-overloaded cardiomyocytes. Increased glucose availability was achieved through (a) high glucose (25 mM) addition to the culture medium or (b) adenoviral overexpression of protein kinase-D1 (a kinase mediating GLUT4 translocation). In HL-1 cardiomyocytes, adult rat and human cardiomyocytes cultured under high-lipid conditions, each treatment stimulated v-ATPase re-assembly, endosomal acidification, endosomal CD36 retention and prevented myocellular lipid accumulation. Additionally, these treatments preserved insulin-stimulated GLUT4 translocation and glucose uptake as well as contractile force. The present findings reveal v-ATPase functions as a key regulator of cardiomyocyte substrate preference and as a novel potential treatment approach for the diabetic heart.

SUBMITTER: Wang S 

PROVIDER: S-EPMC7073192 | biostudies-literature | 2020 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Augmenting Vacuolar H<sup>+</sup>-ATPase Function Prevents Cardiomyocytes from Lipid-Overload Induced Dysfunction.

Wang Shujin S   Wong Li-Yen LY   Neumann Dietbert D   Liu Yilin Y   Sun Aomin A   Antoons Gudrun G   Strzelecka Agnieszka A   Glatz Jan F C JFC   Nabben Miranda M   Luiken Joost J F P JJFP  

International journal of molecular sciences 20200223 4


The diabetic heart is characterized by a shift in substrate utilization from glucose to lipids, which may ultimately lead to contractile dysfunction. This substrate shift is facilitated by increased translocation of lipid transporter CD36 (SR-B2) from endosomes to the sarcolemma resulting in increased lipid uptake. We previously showed that endosomal retention of CD36 is dependent on the proper functioning of vacuolar H<sup>+</sup>-ATPase (v-ATPase). Excess lipids trigger CD36 translocation thro  ...[more]

Similar Datasets

| S-EPMC5405429 | biostudies-literature
| S-EPMC8353480 | biostudies-literature
| S-EPMC9657709 | biostudies-literature
| S-EPMC6641988 | biostudies-literature
| S-EPMC6170402 | biostudies-literature
| S-EPMC4517229 | biostudies-literature
| S-EPMC5480082 | biostudies-literature
| S-EPMC5405435 | biostudies-literature
| S-EPMC10121453 | biostudies-literature
| S-EPMC5407715 | biostudies-literature