Project description:The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has created a severe global health crisis. In this paper, we used docking and simulation methods to identify potential targets and the mechanism of action of chloroquine (CQ) and hydroxychloroquine (HCQ) against SARS-CoV-2. Our results showed that both CQ and HCQ influenced the functionality of the envelope (E) protein, necessary in the maturation processes of the virus, due to interactions that modify the flexibility of the protein structure. Furthermore, CQ and HCQ also influenced the proofreading and capping of viral RNA in SARS-CoV-2, performed by nsp10/nsp14 and nsp10/nsp16. In particular, HCQ demonstrated a better energy binding with the examined targets compared to CQ, probably due to the hydrogen bonding of the hydroxyl group of HCQ with polar amino acid residues.
Project description:Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a rapidly emerging viral infection causing coronavirus disease 2019 (COVID-19). Hydroxychloroquine and chloroquine have garnered unprecedented attention as potential therapeutic agents against COVID-19 following several small clinical trials, uncontrolled case series, and public figure endorsements. While there is a growing body of scientific data, there is also concern for harm, particularly QTc prolongation and cardiac arrhythmias. Here, we perform a rapid narrative review and discuss the strengths and limitations of existing in vitro and clinical studies. We call for additional randomized controlled trial evidence prior to the widespread incorporation of hydroxychloroquine and chloroquine into national and international treatment guidelines.
Project description:ImportanceAccording to evidence-based, expert recommendations, long-term users of chloroquine or hydroxychloroquine sulfate should undergo regular visits to eye care providers and diagnostic testing to check for maculopathy.ObjectiveTo determine whether patients with rheumatoid arthritis (RA) or systemic lupus erythematosus (SLE) taking chloroquine or hydroxychloroquine are regularly visiting eye care providers and being screened for maculopathy.Design, setting, and participantsPatients with RA or SLE who were continuously enrolled in a particular managed care network for at least 5 years between January 1, 2001, and December 31, 2011, were studied. Patients' amount of chloroquine or hydroxychloroquine use in the 5 years since the initial RA or SLE diagnosis was calculated, along with their number of eye care visits and diagnostic tests for maculopathy. Those at high risk for maculopathy were identified. Logistic regression was performed to assess potential factors associated with regular eye care visits (annual visits in ≥3 of 5 years) among chloroquine or hydroxychloroquine users, including those at highest risk for maculopathy.Main outcomes and measuresAmong chloroquine or hydroxychloroquine users and those at high risk for toxic maculopathy, the proportions with regular eye care visits and diagnostic testing, as well as the likelihood of regular eye care visits.ResultsAmong 18 051 beneficiaries with RA or SLE, 6339 (35.1%) had at least 1 record of chloroquine or hydroxychloroquine use, and 1409 (7.8%) had used chloroquine or hydroxychloroquine for at least 4 years. Among those at high risk for maculopathy, 27.9% lacked regular eye care visits, 6.1% had no visits to eye care providers, and 34.5% had no diagnostic testing for maculopathy during the 5-year period. Among high-risk patients, each additional month of chloroquine or hydroxychloroquine use was associated with a 2.0% increased likelihood of regular eye care (adjusted odds ratio, 1.02; 95% CI, 1.01-1.03). High-risk patients whose SLE or RA was managed by rheumatologists had a 77.4% increased likelihood of regular eye care (adjusted odds ratio, 1.77; 95% CI, 1.27-2.47) relative to other patients.Conclusions and relevanceIn this insured population, many patients at high risk for maculopathy associated with the use of chloroquine or hydroxychloroquine are not undergoing routine monitoring for this serious adverse effect. Future studies should explore factors contributing to suboptimal adherence to expert guidelines and the potential effect on patients' vision-related outcomes.
Project description:Coronavirus disease 2019 (COVID-19) is a kind of viral pneumonia with an unusual outbreak in Wuhan, China, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). There is currently no licensed antiviral treatment available to prevent human CoV infection. The widespread clinical use and existing knowledge on antiviral mechanisms of remdesivir, lopinavir/ritonavir and chloroquine/hydroxychloroquine in the treatment of previous epidemic diseases, namely, severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), may be helpful in the combat with novel SARS-CoV-2 infection. Recent clinical evidence didn't confirm the beneficial role of lopinavir/ritonavir and chloroquine/hydroxychloroquine for COVID-19 patients and their use was reassessed. We provide an overview of the current evidence into the mechanisms of action of these available drugs which are repurposed for treatment of the new virus. Available data identifies remdesivir as an adenosine analogue that can target the RNA-dependent RNA polymerase and block viral RNA synthesis. It has been a promising antiviral drug against a wide array of RNA viruses. 3CLpro is a major CoV protease that cleaves the large replicase polyproteins during viral replication and can be targeted by the protease inhibitor lopinavir/ritonavir but the clinical effects are controversial. Chloroquine/Hydroxychloroquine could impair the replication of SARSCoV-2 by multiple mechanisms and their immunomodulatory properties could ameliorate clinical manifestations that are mediated by immune reactions of the host although its beneficial effects are under question and need to be proven at the clinical level. Existing in vitro and in vivo evidence delineate the molecular mechanisms of these drugs in CoV-infected cells. Numerous studies demonstrated the ability of remdesivir to inhibit SARS-CoV-2 replication but future research would be needed to understand the exact mode of action of lopinavir/ritonavir and chloroquine/hydroxychloroquine in SARS-CoV-2 infected cells and to use this knowledge in the treatment of the current COVID-19.
Project description:IntroductionHydroxychloroquine (HCQ)/Chloroquine (CQ) has been evaluated for treatment and prophylaxis against SARS-CoV-2 infection in various studies with conflicting results. We performed a systematic review to synthesize the currently available evidence over the efficacy and safety of HCQ/CQ therapy alone against SARS-CoV-2 infection.MethodsWe searched Embase, PubMed, Web of Science, and Cochrane central for randomized controlled trials (RCTs) and prospective cohort studies published until October 15, 2020 and assessing the efficacy of HCQ alone against SARS-CoV-2 infection. We included studies evaluating HCQ/CQ alone as intervention and placebo/standard care as a control group. Retrospective studies and studies using other drugs (namely azithromycin, corticosteroids, immunomodulators, etc.) we excluded. Thirteen RCTs and three prospective cohort studies were included in this review. We pooled data using a random-effect model.ResultsPooled data from 12 studies (9917 participants) showed that HCQs increase mortality as compared to placebo/standard of care (RR 1.10; 95% CI:1.00-1.20). Hydroxychloroquine did not reduce the need for hospitalization in out-patients (RR 0.57; 95% CI 0.31-1.02). HCQ group has a significantly higher rate of any adverse event (RR 2.68; 95% CI 1.55-4.64), as compared to the control group. Also, using HCQ for prophylaxis against SARS-CoV-2 infection did not reduce the risk of acquiring SARS-CoV-2 infection (RR 1.04; 95% CI 0.58-1.88).ConclusionsHCQ therapy for COVID-19 is associated with an increase in mortality and other adverse events. The negative effects are more pronounced in hospitalized patients. Therefore, with the available evidence, HCQ should not be used in prophylaxis or treatment of patients with COVID-19.
Project description:Recently, the pandemic outbreak of a novel coronavirus, officially termed as severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), indicated by a pulmonary infection in humans, has become one of the most significant challenges for public health. In the current fight against coronavirus disease-2019, the medical and health authorities across the world focused on quick diagnosis and isolation of patients; meanwhile, researchers worldwide are exploring the possibility of developing vaccines and novel therapeutic options to combat this deadly disease. Recently, based on various small clinical observations, uncontrolled case studies and previously reported antiviral activity against SARS-CoV-1 chloroquine (CQ) and hydroxychloroquine (HCQ) have attracted exceptional consideration as possible therapeutic agents against SARS-CoV-2. However, there are reports on little to no effect of CQ or HCQ against SARS-CoV-2, and many reports have raised concerns about their cardiac toxicity. Here, in this review, we examine the chemistry, molecular mechanism, and pharmacology, including the current scenario and future prospects of CQ or HCQ in the treatment of SARS-CoV-2.
Project description:Since the end of 2019, the outbreak of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has evolved into a global pandemic. There is an urgent need for effective and low-toxic antiviral drugs to remedy Remdesivir's limitation. Hydroxychloroquine, a broad spectrum anti-viral drug, showed inhibitory activity against SARS-CoV-2 in some studies. Thus, we adopted a drug repurposing strategy, and further investigated hydroxychloroquine. We obtained different configurations of hydroxychloroquine side chains by using chiral resolution technique, and successfully furnished R-/S-hydroxychloroquine sulfate through chemical synthesis. The R configuration of hydroxychloroquine was found to exhibit higher antiviral activity (EC50 = 3.05 μM) and lower toxicity in vivo. Therefore, R-HCQ is a promising lead compound against SARS-CoV-2. Our research provides new strategy for the subsequent research on small molecule inhibitors against SARS-CoV-2.
Project description:The development of effective antiviral drugs against SARS-CoV-2 is urgently needed and a global health priority. In light of the initial data regarding the repurposing of hydroxychloroquine (HCQ) to tackle this coronavirus, herein we present a quantitative synthesis and spectroscopic and thermal characterization of seven HCQ room temperature ionic liquids (HCQ-ILs) obtained by direct protonation of the base with two equivalents of organic sulfonic, sulfuric and carboxylic acids of different polarities. Two non-toxic and hydrophilic HCQ-ILs, in particular, [HCQH2][C1SO3]2 and [HCQH2][GlcCOO]2, decreased the virus-induced cytopathic effect by two-fold in comparison with the original drug, [HCQH2][SO4]. Despite there being no significant differences in viral RNA production between the three compounds, progeny virus production was significantly affected (p < 0.05) by [HCQH2][GlcCOO]2. Overall, the data suggest that the in vitro antiviral activities of the HCQ-ILs are most likely the result of specific intra- and intermolecular interactions and not so much related with their hydrophilic or lipophilic character. This work paves the way for the development of future novel ionic formulations of hydroxychloroquine with enhanced physicochemical properties.
Project description:Recently Chloroquine and its derivative Hydroxychloroquine have garnered enormous interest amongst the clinicians and health authorities' world over as a potential treatment to contain COVID-19 pandemic. The present research aims at investigating the therapeutic potential of Chloroquine and its potent derivative Hydroxychloroquine against SARS-CoV-2 viral proteins. At the same time screening was performed for some chemically synthesized derivatives of Chloroquine and compared their binding efficacy with chemically synthesized Chloroquine derivatives through in silico approaches. For the purpose of the study, some essential viral proteins and enzymes were selected that are implicated in SARS-CoV-2 replication and multiplication as putative drug targets. Chloroquine, Hydroxychloroquine, and some of their chemically synthesized derivatives, taken from earlier published studies were selected as drug molecules. We have conducted molecular docking and related studies between Chloroquine and its derivatives and SARS-CoV-2 viral proteins, and the findings show that both Chloroquine and Hydroxychloroquine can bind to specific structural and non-structural proteins implicated in the pathogenesis of SARS-CoV-2 infection with different efficiencies. Our current study also shows that some of the chemically synthesized Chloroquine derivatives can also potentially inhibit various SARS-CoV-2 viral proteins by binding to them and concomitantly effectively disrupting the active site of these proteins. These findings bring into light another possible mechanism of action of Chloroquine and Hydroxychloroquine and also pave the way for further drug repurposing and remodeling.Communicated by Ramaswamy H. Sarma.
Project description:Coronavirus disease 2019 (COVID-19) is a highly transmissible viral infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clinical trials have reported improved outcomes resulting from an effective reduction or absence of viral load when patients were treated with chloroquine (CQ) or hydroxychloroquine (HCQ). In addition, the effects of these drugs were improved by simultaneous administration of azithromycin (AZM). The receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein binds to the cell surface angiotensin-converting enzyme 2 (ACE2) receptor, allowing virus entry and replication in host cells. The viral main protease (Mpro) and host cathepsin L (CTSL) are among the proteolytic systems involved in SARS-CoV-2 S protein activation. Hence, molecular docking studies were performed to test the binding performance of these three drugs against four targets. The findings showed AZM affinity scores (ΔG) with strong interactions with ACE2, CTSL, Mpro and RBD. CQ affinity scores showed three low-energy results (less negative) with ACE2, CTSL and RBD, and a firm bond score with Mpro. For HCQ, two results (ACE2 and Mpro) were firmly bound to the receptors, however CTSL and RBD showed low interaction energies. The differences in better interactions and affinity between HCQ and CQ with ACE2 and Mpro were probably due to structural differences between the drugs. On other hand, AZM not only showed more negative (better) values in affinity, but also in the number of interactions in all targets. Nevertheless, further studies are needed to investigate the antiviral properties of these drugs against SARS-CoV-2.