Unknown

Dataset Information

0

Oral high dose vitamin B12 decreases renal superoxide and post-ischemia/reperfusion injury in mice.


ABSTRACT: Renal ischemia/reperfusion injury (IRI) is a leading cause of acute kidney injury (AKI), a potentially fatal syndrome characterized by a rapid decline in kidney function. Excess production of superoxide contributes to the injury. We hypothesized that oral administration of a high dose of vitamin B12 (B12 - cyanocobalamin), which possesses a superoxide scavenging function, would protect kidneys against IRI and provide a safe means of treatment. Following unilateral renal IR surgery, C57BL/6J wild type (WT) mice were administered B12 via drinking water at a dose of 50 mg/L. After 5 days of the treatment, plasma B12 levels increased by 1.2-1.5x, and kidney B12 levels increased by 7-8x. IRI mice treated with B12 showed near normal renal function and morphology. Further, IRI-induced changes in RNA and protein markers of inflammation, fibrosis, apoptosis, and DNA damage response (DDR) were significantly attenuated by at least 50% compared to those in untreated mice. Moreover, the presence of B12 at 0.3 μM in the culture medium of mouse proximal tubular cells subjected to 3 hr of hypoxia followed by 1 hr of reperfusion in vitro showed similar protective effects, including increased cell viability and decreased reactive oxygen species (ROS) level. We conclude that a high dose of B12 protects against perfusion injury both in vivo and in vitro without observable adverse effects in mice and suggest that B12 merits evaluation as a treatment for I/R-mediated AKI in humans.

SUBMITTER: Li F 

PROVIDER: S-EPMC7078436 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

2024-01-01 | GSE225105 | GEO
| PRJNA933927 | ENA
| S-EPMC3888358 | biostudies-literature
| S-EPMC7372157 | biostudies-literature
| S-EPMC7990402 | biostudies-literature
| S-EPMC5501469 | biostudies-literature
| S-EPMC4996512 | biostudies-literature
| S-EPMC2396738 | biostudies-literature
| S-EPMC3163124 | biostudies-literature
| S-EPMC5960002 | biostudies-literature