Noise and spectral stability of deep-UV gas-filled fiber-based supercontinuum sources driven by ultrafast mid-IR pulses.
Ontology highlight
ABSTRACT: Deep-UV (DUV) supercontinuum (SC) sources based on gas-filled hollow-core fibers constitute perhaps the most viable solution towards ultrafast, compact, and tunable lasers in the UV spectral region, which can even also extend into the mid-infrared (IR). Noise and spectral stability of such broadband sources are key parameters that define their true potential and suitability towards real-world applications. In order to investigate the spectral stability and noise levels in these fiber-based DUV sources, we generate an SC spectrum that extends from 180?nm (through phase-matched dispersive waves - DWs) to 4 ?m by pumping an argon-filled hollow-core anti-resonant fiber at a mid-IR wavelength of 2.45 ?m. We characterize the long-term stability of the source over several days and the pulse-to-pulse relative intensity noise (RIN) of the DW at 275?nm. The results indicate no sign of spectral degradation over 110?hours, but the RIN of the DW pulses at 275?nm is found to be as high as 33.3%. Numerical simulations were carried out to investigate the spectral distribution of the RIN and the results confirm the experimental measurements and that the poor noise performance is due to the high RIN of the mid-IR pump laser, which was hitherto not considered in numerical modelling of these sources. The results presented herein provide an important step towards an understanding of the noise mechanism underlying such complex light-gas nonlinear interactions and demonstrate the need for pump laser stabilization.
SUBMITTER: Adamu AI
PROVIDER: S-EPMC7080841 | biostudies-literature | 2020 Mar
REPOSITORIES: biostudies-literature
ACCESS DATA