Novel B cell-dependent multiple sclerosis model using extracellular domains of myelin proteolipid protein.
Ontology highlight
ABSTRACT: Therapeutic success of B cell-targeting approaches in multiple sclerosis (MS) has intensified research into the pathogenic and regulatory roles these cells play in demyelinating disease. Dissecting the function of B cells in the MS mouse model experimental autoimmune encephalomyelitis (EAE) is largely confined to induction with either the myelin oligodendrocyte glycoprotein epitope MOG35-55 or the full-length recombinant human MOG protein, the latter representing the most-used B cell-dependent EAE model. There is a clear need to investigate B cell function in additional myelin antigen contexts. Unlike MOG35-55, where lack of B cells yields more severe disease, we show here that the immunodominant myelin proteolipid protein epitope (PLP178-191) elicited identical EAE in WT and ?MT mice, suggesting an absence of B cell engagement by this peptide. We hypothesized that a longer PLP antigen may better engage B cells and designed a peptide encompassing the extracellular domains (ECD) of PLP. We demonstrate here that PLPECD-immunized B cell-deficient mice failed to exhibit EAE. In contrast, PLPECD induced EAE not only in WT mice, but in B cell-sufficient mice incapable of secreting antibodies, suggesting a predominant antigen presentation role. These results establish a novel, efficient B cell-dependent EAE model.
SUBMITTER: Boyden AW
PROVIDER: S-EPMC7081236 | biostudies-literature | 2020 Mar
REPOSITORIES: biostudies-literature
ACCESS DATA