Pyrazole, Imidazole, and Isoindolone Dipyrrinone Analogues: pH-Dependent Fluorophores That Red-Shift Emission Frequencies in a Basic Solution.
Ontology highlight
ABSTRACT: Dipyrrinones are nonfluorescent yellow-pigmented constituents of bilirubin that undergo Z to E isomerization when excited with UV/blue light. Mechanical restriction of the E/Z isomerization process results in highly fluorescent compounds such as N,N-methylene-bridged dipyrrinones and xanthoglows. This manuscript describes the first examples of dipyrrinone analogues, which exhibit fluorescence without covalently linking the pyrole-pyrrolidine nitrogen atoms. Instead these analogues restrict E/Z isomerization through intramolecular hydrogen bonding, resulting in mild to moderately fluorescent compounds (?F = 0.01-0.30). Further, in basic solutions (pH > 12), the dipyrrinone analogues readily deprotonate and absorption/emission profiles of the fluorophores red-shifts by 10-49 nm. Directly from commercial materials, 10 analogues were prepared in 41-96% yields in one step. To estimate the capacity of which intramolecular hydrogen bonding has upon restricting the E/Z isomerization process, conformational energies of all analogues, in both the protonated and deprotonated species, were explored by using quantum-mechanical density functional theory (DFT) and time-dependent DFT calculations. The computed strengths of the intramolecular hydrogen bonds are related to the barriers of rotation about the 5-6 bond and both correlate with the experimentally measured fluorescence quantum yields.
SUBMITTER: Benson N
PROVIDER: S-EPMC7082152 | biostudies-literature | 2019 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA