Unknown

Dataset Information

0

The Degree of t-System Remodeling Predicts Negative Force-Frequency Relationship and Prolonged Relaxation Time in Failing Human Myocardium.


ABSTRACT: The normally positive cardiac force-frequency relationship (FFR) becomes flat or negative in chronic heart failure (HF). Here we explored if remodeling of the cardiomyocyte transverse tubular system (t-system) is associated with alterations in FFR and contractile kinetics in failing human myocardium. Left-ventricular myocardial slices from 13 failing human hearts were mounted into a biomimetic culture setup. Maximum twitch force (F), 90% contraction duration (CD90), time to peak force (TTP) and time to relaxation (TTR) were determined at 37°C and 0.2-2 Hz pacing frequency. F1 Hz/F0.5 Hz and F2 Hz/F0.5 Hz served as measures of FFR, intracellular cardiomyocyte t-tubule distance (?TT) as measure of t-system remodeling. Protein levels of SERCA2, NCX1, and PLB were quantified by immunoblotting. F1 Hz/F0.5 Hz (R 2 = 0.82) and F2 Hz/F0.5 Hz (R 2 = 0.5) correlated negatively with ?TT, i.e., samples with severe t-system loss exhibited a negative FFR and reduced myocardial wall tension at high pacing rates. PLB levels also predicted F1 Hz/F0.5 Hz, but to a lesser degree (R 2 = 0.49), whereas NCX1 was not correlated (R 2 = 0.02). CD90 correlated positively with ?TT (R 2 = 0.39) and negatively with SERCA2/PLB (R 2 = 0.42), indicating that both the t-system and SERCA activity are important for contraction kinetics. Surprisingly, ?TT was not associated with TTP (R 2 = 0) but rather with TTR (R 2 = 0.5). This became even more pronounced when interaction with NCX1 expression was added to the model (R 2 = 0.79), suggesting that t-system loss impairs myocardial relaxation especially when NCX1 expression is low. The degree of t-system remodeling predicts FFR inversion and contraction slowing in failing human myocardium. Moreover, together with NCX, the t-system may be important for myocardial relaxation.

SUBMITTER: Abu-Khousa M 

PROVIDER: S-EPMC7083140 | biostudies-literature | 2020

REPOSITORIES: biostudies-literature

altmetric image

Publications

The Degree of t-System Remodeling Predicts Negative Force-Frequency Relationship and Prolonged Relaxation Time in Failing Human Myocardium.

Abu-Khousa Maha M   Fiegle Dominik J DJ   Sommer Sophie T ST   Minabari Ghazali G   Milting Hendrik H   Heim Christian C   Weyand Michael M   Tomasi Roland R   Dendorfer Andreas A   Volk Tilmann T   Seidel Thomas T  

Frontiers in physiology 20200313


The normally positive cardiac force-frequency relationship (FFR) becomes flat or negative in chronic heart failure (HF). Here we explored if remodeling of the cardiomyocyte transverse tubular system (t-system) is associated with alterations in FFR and contractile kinetics in failing human myocardium. Left-ventricular myocardial slices from 13 failing human hearts were mounted into a biomimetic culture setup. Maximum twitch force (F), 90% contraction duration (CD<sub>90</sub>), time to peak force  ...[more]

Similar Datasets

| S-EPMC3683774 | biostudies-literature
| S-EPMC8217133 | biostudies-literature
| S-EPMC6206883 | biostudies-other
| S-EPMC3139448 | biostudies-literature
2010-05-01 | GSE20665 | GEO
| S-EPMC5685665 | biostudies-other
| S-EPMC5846972 | biostudies-literature
| S-EPMC5414571 | biostudies-literature
| S-EPMC8500181 | biostudies-literature
| S-EPMC1808438 | biostudies-literature