Unknown

Dataset Information

0

Synthesis and Use of Valsartan Metal Complexes as Media for Carbon Dioxide Storage.


ABSTRACT: To address global warming through carbon dioxide storage, three valsartan metal complexes were synthesized in excellent yields (87-92%) through a reaction of the appropriate metal chloride (tin chloride, nickel chloride hexahydrate, or magnesium chloride hexahydrate) and excess valsartan (two mole equivalents) in boiling methanol for 3 h. The structures of the metal complexes were established based on the data obtained from ultraviolet-visible, Fourier transform infrared, and proton nuclear magnetic resonance spectra, as well as from elemental analysis, energy-dispersive X-ray spectra, and magnetic susceptibility. The agglomeration and shape of the particles were determined using field emission scanning electron microscopy analysis. The surface area (16.63-22.75 m2/g) of the metal complexes was measured using the Brunauer-Emmett-Teller method, whereas the Barrett-Joyner-Halenda method was used to determine the particle pore size (0.011-0.108 cm3/g), total average pore volume (6.50-12.46 nm), and pore diameter (6.50-12.47 nm), for the metal complexes. The carbon dioxide uptake of the synthesized complexes, at 323 K and 4 MPa (40 bar), ranged from 24.11 to 34.51 cm2/g, and the nickel complex was found to be the most effective sorbent for carbon dioxide storage.

SUBMITTER: Mohammed A 

PROVIDER: S-EPMC7085107 | biostudies-literature | 2020 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Synthesis and Use of Valsartan Metal Complexes as Media for Carbon Dioxide Storage.

Mohammed Alaa A   Yousif Emad E   El-Hiti Gamal A GA  

Materials (Basel, Switzerland) 20200306 5


To address global warming through carbon dioxide storage, three valsartan metal complexes were synthesized in excellent yields (87-92%) through a reaction of the appropriate metal chloride (tin chloride, nickel chloride hexahydrate, or magnesium chloride hexahydrate) and excess valsartan (two mole equivalents) in boiling methanol for 3 h. The structures of the metal complexes were established based on the data obtained from ultraviolet-visible, Fourier transform infrared, and proton nuclear magn  ...[more]

Similar Datasets

| S-EPMC6514663 | biostudies-literature
| S-EPMC4059918 | biostudies-literature
| S-EPMC6232292 | biostudies-literature
| S-EPMC8528051 | biostudies-literature
| S-EPMC7674654 | biostudies-literature
| S-EPMC8517963 | biostudies-literature
| S-EPMC7006629 | biostudies-literature
| S-EPMC7611910 | biostudies-literature
| S-EPMC5159826 | biostudies-literature
| S-EPMC8179387 | biostudies-literature