Unknown

Dataset Information

0

Activation of µ-δ opioid receptor heteromers inhibits neuropathic pain behavior in rodents.


ABSTRACT: Several reports support the idea that µ- and δ-opioid receptors (ORs) may exist as heterodimers in brain regions involved in pain signaling. The unique pharmacology of these heteromers may present a novel analgesic target. However, the role of µ-δ heteromers in sensory neurons involved in pain and opioid analgesia remains unclear, particularly during neuropathic pain. We examined the effects of spinal nerve injury on µ-δ heteromer expression in dorsal root ganglion (DRG) neurons and the effects of a µ-δ heteromer-targeting agonist, CYM51010, on neuropathic pain behavior in rats and mice. An L5 spinal nerve ligation (SNL) in rats significantly decreased µ-δ heteromer expression in L5 DRG but increased heteromer levels in uninjured L4 DRG. Importantly, in SNL rats, subcutaneous injection of CYM51010 inhibited mechanical hypersensitivity in a dose-related manner (EC50: 1.09 mg/kg) and also reversed heat hyperalgesia and attenuated ongoing pain (2 mg/kg, subcutaneously). HEK-293T cell surface-labeled with µ- and δ-ORs internalized both receptors after exposure to CYM51010. By contrast, in cells transfected with µ-OR alone, CYM51010 was significantly less effective at inducing receptor internalization. Electrophysiologic studies showed that CYM51010 inhibited the C-component and windup phenomenon in spinal wide dynamic range neurons of SNL rats. The pain inhibitory effects of CYM51010 persisted in morphine-tolerant rats but was markedly attenuated in µ-OR knockout mice. Our studies show that spinal nerve injury may increase µ-δ heterodimerization in uninjured DRG neurons, and that µ-δ heteromers may be a potential therapeutic target for relieving neuropathic pain, even under conditions of morphine tolerance.

SUBMITTER: Tiwari V 

PROVIDER: S-EPMC7085422 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC6764458 | biostudies-literature
| S-EPMC9311550 | biostudies-literature
| S-EPMC8218601 | biostudies-literature
| S-EPMC10388387 | biostudies-literature
| S-EPMC5904001 | biostudies-literature
| S-EPMC4639397 | biostudies-literature
| S-EPMC8344368 | biostudies-literature
2022-01-03 | GSE117321 | GEO
| S-EPMC7101422 | biostudies-literature
2020-02-20 | GSE143895 | GEO