Unknown

Dataset Information

0

Designing Multi-Dopant Species in Microporous Architectures to Probe Reaction Pathways in Solid-Acid Catalysis.


ABSTRACT: The introduction of two distinct dopants in a microporous zeotype framework can lead to the formation of isolated, or complementary catalytically active sites. Careful selection of dopants and framework topology can facilitate enhancements in catalysts efficiency in a range of reaction pathways, leading to the use of sustainable precursors (bioethanol) for plastic production. In this work we describe our unique synthetic design procedure for creating a multi-dopant solid-acid catalyst (MgSiAPO-34), designed to improve and contrast with the performance of SiAPO-34 (mono-dopant analog), for the dehydration of ethanol to ethylene. We employ a range of characterization techniques to explore the influence of magnesium substitution, with specific attention to the acidity of the framework. Through a combined catalysis, kinetic analysis and computational fluid dynamics (CFD) study we explore the reaction pathway of the system, with emphasis on the improvements facilitated by the multi-dopant MgSiAPO-34 species. The experimental data supports the validation of the CFD results across a range of operating conditions; both of which supports our hypothesis that the presence of the multi-dopant solid acid centers enhances the catalytic performance. Furthermore, the development of a robust computational model, capable of exploring chemical catalytic flows within a reactor system, affords further avenues for enhancing reactor engineering and process optimisation, toward improved ethylene yields, under mild conditions.

SUBMITTER: Potter ME 

PROVIDER: S-EPMC7089933 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC4971239 | biostudies-literature
| S-EPMC2772208 | biostudies-literature
| S-EPMC4639893 | biostudies-other
| S-EPMC7463028 | biostudies-literature
| S-EPMC6959245 | biostudies-literature
| S-EPMC8288944 | biostudies-literature
| S-EPMC8179475 | biostudies-literature
| S-EPMC2776631 | biostudies-literature
| S-EPMC9095604 | biostudies-literature
| S-EPMC2878667 | biostudies-literature