Project description:Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the infectious disease COVID-19, which was first reported in Wuhan, China in December, 2019. Despite the tremendous efforts to control the disease, COVID-19 has now spread to over 100 countries and caused a global pandemic. SARS-CoV-2 is thought to have originated in bats; however, the intermediate animal sources of the virus are completely unknown. Here, we investigated the susceptibility of ferrets and animals in close contact with humans to SARS-CoV-2. We found that SARS-CoV-2 replicates poorly in dogs, pigs, chickens, and ducks, but ferrets and cats are permissive to infection. We found experimentally that cats are susceptible to airborne infection. Our study provides important insights into the animal models for SARS-CoV-2 and animal management for COVID-19 control.
Project description:We found severe acute respiratory syndrome coronavirus 2 RNA in 6 (8.4%) of 71 ferrets in central Spain and isolated and sequenced virus from 1 oral and 1 rectal swab specimen. Natural infection occurs in kept ferrets when virus circulation among humans is high. However, small ferret collections probably cannot maintain virus circulation.
Project description:Susceptibility to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the outcome of coronavirus disease 2019 (COVID-19) have been linked to underlying health conditions and the age of affected individuals. Here, we assessed the effect of age on SARS-CoV-2 infection using a ferret model. For this, young (6-month-old) and aged (18- to 39-month-old) ferrets were inoculated intranasally with various doses of SARS-CoV-2. By using infectious virus shedding in respiratory secretions and seroconversion, we estimated that the infectious dose of SARS-CoV-2 in aged animals is ∼32 PFU per animal, while in young animals it was estimated to be ∼100 PFU. We showed that viral replication in the upper respiratory tract and shedding in respiratory secretions is enhanced in aged ferrets compared to young animals. Similar to observations in humans, this was associated with higher transcription levels of two key viral entry factors, ACE2 and TMPRSS2, in the upper respiratory tract of aged ferrets. IMPORTANCE In humans, ACE2 and TMPRSS2 are expressed in various cells and tissues, and differential expression has been described in young and old people, with a higher level of expressing cells being detected in the nasal brushing of older people than young individuals. We described the same pattern occurring in ferrets, and we demonstrated that age affects susceptibility of ferrets to SARS-CoV-2. Aged animals were more likely to get infected when exposed to lower infectious dose of the virus than young animals, and the viral replication in the upper respiratory tract and shedding are enhanced in aged ferrets. Together, these results suggest that the higher infectivity and enhanced ability of SARS-CoV-2 to replicate in aged individuals is associated, at least in part, with transcription levels of ACE2 and TMPRSS2 at the sites of virus entry. The young and aged ferret model developed here may represent a great platform to assess age-related differences in SARS-CoV-2 infection dynamics and replication.
Project description:The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in China and rapidly spread worldwide. To prevent SARS-CoV-2 dissemination, understanding the in vivo characteristics of SARS-CoV-2 is a high priority. We report a ferret model of SARS-CoV-2 infection and transmission that recapitulates aspects of human disease. SARS-CoV-2-infected ferrets exhibit elevated body temperatures and virus replication. Although fatalities were not observed, SARS-CoV-2-infected ferrets shed virus in nasal washes, saliva, urine, and feces up to 8 days post-infection. At 2 days post-contact, SARS-CoV-2 was detected in all naive direct contact ferrets. Furthermore, a few naive indirect contact ferrets were positive for viral RNA, suggesting airborne transmission. Viral antigens were detected in nasal turbinate, trachea, lungs, and intestine with acute bronchiolitis present in infected lungs. Thus, ferrets represent an infection and transmission animal model of COVID-19 that may facilitate development of SARS-CoV-2 therapeutics and vaccines.
Project description:While the seroprevalence of SARS-CoV-2 in healthy people does not differ significantly among age groups, those aged 65 years or older exhibit strikingly higher COVID-19 mortality compared to younger individuals. To further understand differing COVID-19 manifestations in patients of different ages, three age groups of ferrets were infected with SARS-CoV-2. Although SARS-CoV-2 was isolated from all ferrets regardless of age, aged ferrets (≥ 3 years old) showed higher viral loads, longer nasal virus shedding, and more severe lung inflammatory cell infiltration and clinical symptoms compared to juvenile (≤ 6 months) and young adult (1-2 years) groups. Transcriptome analysis of aged ferret lungs revealed strong enrichment of gene sets related to type I interferon, activated T cells, and M1 macrophage responses, mimicking the gene expression profile of severe COVID-19 patients. Thus, SARS-CoV-2-infected aged ferrets highly recapitulate COVID-19 patients with severe symptoms and are useful for understanding age-associated infection, transmission, and pathogenesis of SARS-CoV-2.
Project description:While the seroprevalence of SARS-CoV-2 in healthy people does not differ significantly among age groups, those aged 65 years or older exhibit strikingly higher COVID-19 mortality compared to younger individuals. To further understand differing COVID-19 manifestations in patients of different ages, three age groups of ferrets are infected with SARS-CoV-2. Although SARS-CoV-2 is isolated from all ferrets regardless of age, aged ferrets (≥3 years old) show higher viral loads, longer nasal virus shedding, and more severe lung inflammatory cell infiltration, and clinical symptoms compared to juvenile (≤6 months) and young adult (1-2 years) groups. Furthermore, direct contact ferrets co-housed with the virus-infected aged group shed more virus than direct-contact ferrets co-housed with virus-infected juvenile or young adult ferrets. Transcriptome analysis of aged ferret lungs reveals strong enrichment of gene sets related to type I interferon, activated T cells, and M1 macrophage responses, mimicking the gene expression profile of severe COVID-19 patients. Thus, SARS-CoV-2-infected aged ferrets highly recapitulate COVID-19 patients with severe symptoms and are useful for understanding age-associated infection, transmission, and pathogenesis of SARS-CoV-2.
Project description:While the seroprevalence of SARS-CoV-2 in healthy people does not differ significantly among age groups, those aged 65 years or older exhibit strikingly higher COVID-19 mortality compared to younger individuals. To further understand differing COVID-19 manifestations in patients of different ages, three age groups of ferrets are infected with SARS-CoV-2. Although SARS-CoV-2 is isolated from all ferrets regardless of age, aged ferrets (≥3 years old) shows higher viral loads, longer nasal virus shedding, and more severe lung inflammatory cell infiltration and clinical symptoms compared to juvenile (≤6 months) and young adult (1-2 years) groups. Furthermore, direct contact ferrets co-housed with the virus-infected aged group shed more virus than direct-contact ferrets co-housed with virus-infected juvenile or young adult ferrets. Transcriptome analysis of aged ferret lungs reveals strong enrichment of gene sets related to type I interferon, activated T cells, and M1 macrophage responses, mimicking the gene expression profile of severe COVID-19 patients. Thus, SARS-CoV-2-infected aged ferrets highly recapitulate COVID-19 patients with severe symptoms and are useful for understanding age-associated infection, transmission, and pathogenesis of SARS-CoV-2.
Project description:Highly pathogenic avian influenza virus (HPAIV) H5N1 infections in felids have been reported in several countries. Feeding on infected birds has been suggested as potential source of infection.The study aimed to verify gastrointestinal infection as possible portal of entry for HPAIV H5N1 in cats.Four cats were infected oculo-nasopharyngeally with 10⁶ 50% egg infectious dose (EID(50) ) of HPAIV H5N1 A/cat/Germany/R606/2006. Two cats were infected intravenously with 10⁶ EID(50) and two cats were inoculated orally with 10⁷ EID(50) HPAIV embedded in gelatine capsules to mimic gastrointestinal exposure and to avoid virus contact to oropharyngeal or respiratory tissues. Cats were monitored for 6 days by physical examination, virus excretion, and peripheral blood lymphocyte counts. Blood chemical parameters (including AST, ALT, CPK, and TBIL) and viral excretion using pharyngeal and rectal swabs were analyzed.Infected cats showed elevated body temperature up to 41·3°C starting from day 1 or 2 p.i. All infected cats excreted virus in pharyngeal swabs within 2 days p.i. co-inciding with the development of clinical signs (anorexia, depression, and labored breathing) irrespective of the infection route. Virus dissemination occurred through cell-free and cell-associated viremia. Infected cats developed lymphopenia, hepatic necrosis, pneumonia, and significantly elevated levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatine phosphokinase (CPK), and TBIL.The experiments show that the gastrointestinal tract can serve as portal for the entry of HPAIV H5N1 into cats. Infection routes used did not influence viral tissue tropism and course of disease.
Project description:Ferrets were experimentally inoculated with SARS-CoV-2 (severe acute respiratory syndrome (SARS)-related coronavirus 2) to assess infection dynamics and host response. During the resulting subclinical infection, viral RNA was monitored between 2 and 21 days post-inoculation (dpi), and reached a peak in the upper respiratory cavity between 4 and 6 dpi. Viral genomic sequence analysis in samples from three animals identified the Y453F nucleotide substitution relative to the inoculum. Viral RNA was also detected in environmental samples, specifically in swabs of ferret fur. Microscopy analysis revealed viral protein and RNA in upper respiratory tract tissues, notably in cells of the respiratory and olfactory mucosae of the nasal turbinates, including olfactory neuronal cells. Antibody responses to the spike and nucleoprotein were detected from 21 dpi, but virus-neutralizing activity was low. A second intranasal inoculation (re-exposure) of two ferrets after a 17-day interval did not produce re-initiation of viral RNA shedding, but did amplify the humoral response in one animal. Therefore, ferrets can be experimentally infected with SARS-CoV-2 to model human asymptomatic infection.
Project description:Severe acute respiratory syndrome (SARS) caused by a newly identified coronavirus (SARS-CoV) remains a threat to cause epidemics as evidenced by recent sporadic cases in China. In this communication, we evaluated the efficacy and safety of two SARS vaccine candidates based on the recombinant modified vaccinia Ankara (MVA) expressing SARS-CoV spike or nucleocapsid proteins in ferrets. No clinical signs were observed in all the ferrets challenged with SARS-CoV. On the other hand, vaccination did not prevent SARS-CoV infection in ferrets. In contrast, immunized ferrets (particularly those immunized with rMVA-spike) exhibited significantly stronger inflammatory responses and focal necrosis in liver tissue after SARS-CoV challenge than control animals. Thus, our data suggest that enhanced hepatitis is linked to vaccination with rMVA expressing SARS-CoV antigens.