Age-dependent pathogenic characteristics of SARS-CoV-2 infection in ferrets
Ontology highlight
ABSTRACT: While the seroprevalence of SARS-CoV-2 in healthy people does not differ significantly among age groups, those aged 65 years or older exhibit strikingly higher COVID-19 mortality compared to younger individuals. To further understand differing COVID-19 manifestations in patients of different ages, three age groups of ferrets are infected with SARS-CoV-2. Although SARS-CoV-2 is isolated from all ferrets regardless of age, aged ferrets (≥3 years old) shows higher viral loads, longer nasal virus shedding, and more severe lung inflammatory cell infiltration and clinical symptoms compared to juvenile (≤6 months) and young adult (1-2 years) groups. Furthermore, direct contact ferrets co-housed with the virus-infected aged group shed more virus than direct-contact ferrets co-housed with virus-infected juvenile or young adult ferrets. Transcriptome analysis of aged ferret lungs reveals strong enrichment of gene sets related to type I interferon, activated T cells, and M1 macrophage responses, mimicking the gene expression profile of severe COVID-19 patients. Thus, SARS-CoV-2-infected aged ferrets highly recapitulate COVID-19 patients with severe symptoms and are useful for understanding age-associated infection, transmission, and pathogenesis of SARS-CoV-2.
Project description:Many patients who are diagnosed with coronavirus disease 2019 (COVID-19) suffer from venous thromboembolic complications despite the use of stringent anticoagulant prophylaxis. Studies on the exact mechanism(s) underlying thrombosis in COVID-19 are limited as animal models commonly used to study venous thrombosis pathophysiology (i.e. rats and mice) are naturally not susceptible to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Ferrets are susceptible to SARS-CoV-2 infection, successfully used to study virus transmission, and were previously used to study activation of coagulation and thrombosis during influenza virus infection. Here, we used plasma and lung material from SARS-CoV-2-inoculated ferrets to explore their use in studying COVID-19-associated changes in coagulation and thrombosis. Lungs of ferrets inoculated intranasally with SARS-CoV-2 demonstrated alveolar septa that were mildly expanded by macrophages, and diffuse interstitial histiocytic pneumonia. However, no macroscopical or microscopical evidence of vascular thrombosis in the lungs of SARS-CoV-2-inoculated ferrets was found. Longitudinal plasma profiling using a mass spectrometry-based approach revealed minor differences in plasma protein profiles in SARS-CoV-2-inoculated ferrets up to 2 weeks post-infection. Apart from fibrinogen, the majority of plasma coagulation factors were stable and demonstrated a low coefficient of variation. We conclude that while ferrets are an essential and well-suited animal model to study SARS-CoV-2 transmission, their use to study SARS-CoV-2-related changes relevant to thrombotic disease is limited.
Project description:Background: Type I interferons (IFNs) are essential to the clearance of viral diseases, in part by initiating upregulation of IFN regulated genes (IRGs). A clear distinction between genes upregulated directly by virus and genes upregulated by secondary IFN production has not been made. Here we investigated the genes regulated by IFN-a2b compared to the genes regulated by SARS-CoV infection in ferrets. Methods: We characterized early host immune responses in peripheral blood and lung necropsies of ferrets injected with IFN-a2b or infected with SARS-CoV/Tor 2 strain, using microarray analysis on the Affymetrix platform. Results: We identified a common IRG signature that was upregulated in both SARS-CoV infected ferrets as well as in ferrets injected with IFN-a2b. We also identified unique patterns of gene expression for leukocyte activation, cell adhesion and complement pathways between IFN-a2b injection and SARS-CoV infection. Conclusions: Our results define the effects of IFN-a2b on the immune system of ferrets highlighting genes regulated by IFN during SARS-CoV infection. We have shown the similarities and differences of top funcional gene groups as well as pathways that play key roles in early immune responses in ferrets in response to IFN-a2b or SARS-CoV. Key words: ferret, gene expression, SARS, interferon. Keywords: time course In experiments with IFN-a2b, for peripheral blood, 15 ferrets were randomly allocated to 3 groups: Day 0, 5 ferrets (no IFN injection), day 1, 6 ferrets (injected), and day 2, 4 ferrets (injected). For lung necropsies of injected ferrets with IFN-a2b, we used 12 ferrets in 3 groups: 4 ferrets, day 0 (no IFN injection), 4 ferrets, day 1 (injected) and 4 ferrets, day 2 (injected). Experimental groups for SARS-CoV infection was as follows: For peripheral blood, 3 and 4 ferrets for day 0 (no infection) and day 2 (infection) respectively. For lung neceropsies, a total of 9 ferrets in 3 groups, each with 3 replicates for day 0 (no infection), day 1 (infection) and day 2 (infection).
Project description:The ongoing COVID-19 pandemic caused by SARS-CoV-2 has affected millions of people worldwide and has significant implications for public health. Host transcriptomics profiling provides comprehensive understanding of how the virus interacts with host cells and how the host responds to the virus. COVID-19 disease alters the host transcriptome, affecting cellular pathways and key molecular functions. To contribute to the global effort to understand the virus’s effect on host cell transcriptome, we have generated a dataset from nasopharyngeal swabs of 35 individuals infected with SARS-CoV-2 from the Campania region in Italy during the three outbreaks, with different clinical conditions. This dataset will help to elucidate the complex interactions among genes and can be useful in the development of effective therapeutic pathways
Project description:We utilize single-cell sequencing (scSeq) of lymphocyte immune repertoires and transcriptomes to quantitatively profile the adaptive immune response in COVID-19 patients of varying age. Our scSeq analysis defines the adaptive immune repertoire and transcriptome in convalescent COVID-19 patients and shows important age-related differences implicated in immunity against SARS-CoV-2.
Project description:Objectives: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) causes the worldwide COVID-19 pandemic. While SARS-CoV-2 can infect people of all ages and both sexes, senior populations are at greatest risk of severe disease and worse outcomes, and sexual dimorphism has been reported in COVID-19. COVID-19 causes damage to multiple organ systems, including the brain. Neurological symptoms are widely observed in patients with Covid-19, with many survivors suffering from persistent neurological impairment, potentially accelerating Alzheimer’s disease (AD). This study aims to investigate the mechanisms underlying the impact of age, and sex on neuroinflammation due to SARS-CoV-2 infection using mouse models. Methods: Wild-type C57BL/6 mice were subjected to intranasal inoculation of SARS-CoV-2 lineage B.1.351, followed by daily body weight monitoring. At 7 dpi, viral burden and inflammatory cytokine/chemokine responses in the lung and brain were determined by quantitative RT-PCR, followed by immunohistochemical and transcriptomic analyses. Results: Older age, male sex, showed increased lung viral loads and severity of SARS-CoV-2 infection in mice. No viral RNA was detected in the brains of infected mice; however, IL-6 and CCL2 mRNA increased significantly, particularly in brains of old and APOE4 mice. Unbiased brain RNA-seq/transcriptomic analysis showed that SARS-CoV-2 infection caused significant changes in gene expression profiles, and pathway analysis identified innate immunity and defense response to virus and other organisms as the major molecular networks affected in the brain by SARS-CoV-2 infection. Conclusions: Our findings demonstrate that age, and sex, modify the progression and outcome of SARS-CoV-2 infection. SARS-CoV-2 infection triggers neuroinflammatory responses despite the lack of detectable virus in the brain. Changes in molecular networks of innate immunity and defense response to microorganisms underlie the impact of SARS-CoV-2 infection in the brain. These findings in mice mimic epidemiological and clinical observations in humans with Covid-19.
Project description:Older age is one of the strongest risk factors for COVID-19 morbidity and mortality. Here, we sought to determine whether age-associated cellular senescence contributes to the severity of COVID-19 by studying the well-established golden hamster model of SARS-CoV-2-driven lung disease. We found that aged hamsters (22 months of age) accumulate senescent cells in the lungs and that the senolytic drug ABT-263 depletes these cells at baseline and during a SARS-CoV-2 infection. Relative to young hamsters (2 months of age), aged hamsters had a greater viral load during the acute phase of infection and displayed higher levels of sequelae during the post-acute phase. Interestingly, early treatment with ABT-263 was associated with a significantly lower pulmonary viral load, an effect associated with lower angiotensin converting enzyme 2, the receptor for SARS-CoV-2, and an amelioration of COVID-19-like lung disease in aged (but not young) animals. ABT-263 treatment of aged animals was also associated with lower pulmonary and systemic levels of senescence-associated secretory phenotype factors. Furthermore, early removal of senescent cells reduced the longer-term pulmonary inflammation. These data demonstrate the causative role of age-associated pre-existing senescent cells on the pathologic severity of experimental COVID-19.
Project description:Post-acute sequelae of COVID-19 (PASC) represent an emerging global crisis. However, quantifiable risk-factors for PASC and their biological associations are poorly resolved. We executed a deep multi-omic, longitudinal investigation of 309 COVID-19 patients from initial diagnosis to convalescence (2-3 months later), integrated with clinical data, and patient-reported symptoms. We resolved four PASC-anticipating risk factors at the time of initial COVID-19 diagnosis: type 2 diabetes, SARS-CoV-2 RNAemia, Epstein-Barr virus viremia, and specific autoantibodies. In patients with gastrointestinal PASC, SARS-CoV-2-specific and CMV-specific CD8+ T cells exhibited unique dynamics during recovery from COVID-19. Analysis of symptom-associated immunological signatures revealed coordinated immunity polarization into four endotypes exhibiting divergent acute severity and PASC. We find that immunological associations between PASC factors diminish over time leading to distinct convalescent immune states. Detectability of most PASC factors at COVID-19 diagnosis emphasizes the importance of early disease measurements for understanding emergent chronic conditions and suggests PASC treatment strategies.
Project description:To further investigate the underlying mechanisms of severe acute respiratory syndrome (SARS) pathogenesis and evaluate the therapeutic efficacy of potential drugs and vaccines it is necessary to use an animal model that is highly representative of the human condition in terms of respiratory anatomy, physiology and clinical sequelae. The ferret, Mustela putorius furo, supports SARS-CoV replication and displays many of the symptoms and pathological features seen in SARS-CoV-infected humans. We have recently established a SARS-CoV infection-challenge ferret platform for use in evaluating potential therapeutics to treat SARS. The main objective of the current study was to extend our previous results and identify early host immune responses upon infection and determine immune correlates of protection upon challenge with SARS-CoV in ferrets. Keywords: time course This study is a simple time course (58 day) examination of host responses in 35 SARS-CoV (TOR2) infected ferrets with the addition of a challenge inoculation of SARS CoV (TOR2) at day 29 post infection. Three mock-infected ferrets are included as negative controls. Due to the unavailability of ferret microarrays, Affymetrix Canine 2.0 oligonucleotide arrays were chosen following sequence analysis of our ferret cDNA library (~5000 clones) and demonstration of high levels of homology (>80%) between dog and ferret.
Project description:Male sex belongs to one of the risk factors for severe COVID-19 outcome. However, underlying mechanisms that could affect sex dependent disease outcome are yet unknown. Here, we identified the CYP19A1 gene encoding for the testosterone-to-estradiol metabolizing enzyme CYP19A1 (alias aromatase) as a host factor that contributes to worsened disease outcome in male hamsters. SARS-CoV-2 infection increases CYP19A1 transcription most prominently in the lungs of male animals, which correlates with reduced circulating testosterone and increased circulating estradiol levels. Dysregulated sex hormone levels in male golden hamsters are associated with reduced lung function compared to females. Treatment of SARS-CoV-2 infected hamsters with letrozole, a clinically approved CYP19A1 inhibitor, supported recovery of dysregulated sex hormone levels and was associated with improved lung function in male but not female animals compared to placebo controls. Whole-lung transcriptome analysis in letrozole treated versus placebo treated control groups revealed key pathways associated with improved lung health in males. To seek translation of these findings into humans, we analyzed autopsy-derived lung samples of COVID-19 cases from three independent study sites. We found that CYP19A1 transcription and protein expression is strongly elevated in the lungs of men who died with COVID-19 as compared to females or non-COVID-19 controls. Our findings highlight the role of the lung as a yet unrecognized but critical organ involved in metabolic responses against respiratory virus infections. Furthermore, inhibition of CYP19A1 by the clinically approved drug letrozole may pose a new therapeutic strategy to reduce poor long-term COVID-19 outcome.
Project description:SARS-CoV-2 infection results in impaired interferon response in severe COVID-19 patients. However, how SARS-CoV-2 interferes with host immune response is incompletely understood. Here, we sequenced small RNAs from SARS-CoV-2-infected human cells and identified a microRNA (miRNA) derived from a recently evolved region of the viral genome. We show that the virus-derived miRNA produces two miRNA isoforms in infected cells by the enzyme Dicer and they are loaded into Argonaute proteins. Moreover, the predominant miRNA isoform targets the 3´UTR of interferon-stimulated genes and represses their expression in a miRNA-like fashion. Finally, the two viral miRNA isoforms were detected in nasopharyngeal swabs from COVID-19 patients. We propose that SARS-CoV-2 can potentially employ a virus-derived miRNA to hijack the host miRNA machinery which can lead to evasion of the interferon-mediated immune response.