Unknown

Dataset Information

0

Atomic-level handedness determination of chiral crystals using aberration-corrected scanning transmission electron microscopy.


ABSTRACT: Handedness or chirality determination is a challenging and important topic in various fields including chemistry and biology, as two enantiomers have the same composition and mirror symmetry related structures, but might show totally different activities and properties in enantioselective separations, catalysis and so on. However, current methods are unable to reveal the handedness locally of a nanocrystal at the atomic-level in real-space imaging due to the well-known fact that chiral information is lost in a two-dimensional projection. Herein, we present a method for handedness determination of chiral crystals by atomic-resolution imaging using Cs-corrected scanning transmission electron microscopy. In particular, we demonstrate that enantiomorphic structures can be distinguished through chirality-dependent features in two-dimensional projections by comparing a tilt-series of high-resolution images along different zone axes. The method has been successfully applied to certify the specific enantiomorphic forms of tellurium, tantalum silicide and quartz crystals, and it has the potential to open up new possibilities for rational synthesis and characterization of chiral crystals.

SUBMITTER: Dong Z 

PROVIDER: S-EPMC7101389 | biostudies-literature | 2020 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Atomic-level handedness determination of chiral crystals using aberration-corrected scanning transmission electron microscopy.

Dong Zhuoya Z   Ma Yanhang Y  

Nature communications 20200327 1


Handedness or chirality determination is a challenging and important topic in various fields including chemistry and biology, as two enantiomers have the same composition and mirror symmetry related structures, but might show totally different activities and properties in enantioselective separations, catalysis and so on. However, current methods are unable to reveal the handedness locally of a nanocrystal at the atomic-level in real-space imaging due to the well-known fact that chiral informati  ...[more]

Similar Datasets

| S-EPMC1413870 | biostudies-other
| S-EPMC5819432 | biostudies-literature
| S-EPMC8566590 | biostudies-literature
| S-EPMC4468905 | biostudies-other
| S-EPMC6107159 | biostudies-literature
| S-EPMC6098135 | biostudies-literature
| S-EPMC5118727 | biostudies-literature
| S-EPMC4161287 | biostudies-literature
| S-EPMC5341089 | biostudies-literature
| S-EPMC3168530 | biostudies-literature