How many ontogenetic points are needed to accurately describe the ontogeny of a cephalopod conch? A case study of the modern nautilid Nautilus pompilius.
Ontology highlight
ABSTRACT: Recent advancements in tomographic techniques allow for detailed morphological analysis of various organisms, which has proved difficult in the past. However, the time and cost required for the post-processing of highly resolved tomographic data are considerable. Cephalopods are an ideal group to study ontogeny using tomography as the entire life history is preserved within a conch. Although an increasing number of studies apply tomography to cephalopod conchs, the number of conch measurements needed to adequately characterize ontogeny remains unknown. Therefore, the effect of different ontogenetic sampling densities on the accuracy of the resultant growth trajectories needs to be investigated. Here, we reconstruct ontogenetic trajectories of a single conch of Nautilus pompilius using different numbers of ontogenetic points to assess the resulting accuracies. To this end, conch parameters were measured every 10°, 30°, 45°, 90°, and 180°. Results reveal that the overall patterns of reconstructed growth trajectories are nearly identical. Relatively large errors appear to occur where growth changes occur, such as the points of hatching and the onset of morphogenetic countdown before the attainment of maturity. In addition, a previously undocumented growth change before hatching was detected when measurements were taken every 10°, 30°, and 45°, though this growth change was obscured when fewer measurements were used (90° and 180°). The lower number of measurements also masks the subtle fluctuating patterns of conch parameters in middle ontogeny. We conclude that the measurements of a conch every 30° and 45° permit a reasonably precise description of conch ontogeny in nautilids. Since ammonoids were likely more responsive to external stimuli than to nautilids, a much denser sampling may be required for ammonoids.
SUBMITTER: Tajika A
PROVIDER: S-EPMC7103202 | biostudies-literature | 2020
REPOSITORIES: biostudies-literature
ACCESS DATA