Ex Vivo Mechanical Tests and Multiscale Computational Modeling Highlight the Importance of Intramural Shear Stress in Ascending Thoracic Aortic Aneurysms.
Ontology highlight
ABSTRACT: Ascending thoracic aortic aneurysms (ATAAs) are anatomically complex in terms of architecture and geometry, and both complexities contribute to unpredictability of ATAA dissection and rupture in vivo. The goal of this work was to examine the mechanism of ATAA failure using a combination of detailed mechanical tests on human tissue and a multiscale computational model. We used (1) multiple, geometrically diverse, mechanical tests to characterize tissue properties, (2) a multiscale computational model to translate those results into a broadly usable form, and (3) a model-based computer simulation of the response of an ATAA to the stresses generated by the blood pressure. Mechanical tests were performed in uniaxial extension, biaxial extension, shear lap, and peel geometries. ATAA tissue was strongest in circumferential extension and weakest in shear, presumably because of the collagen and elastin in the arterial lamellae. A multiscale, fiber-based model using different fiber properties for collagen, elastin, and interlamellar connections was specified to match all of the experimental data with one parameter set. Finally, this model was used to simulate ATAA inflation using a realistic geometry. The predicted tissue failure occurred in regions of high stress, as expected; initial failure events involved almost entirely interlamellar connections, consistent with arterial dissection - the elastic lamellae remain intact, but the connections between them fail. The failure of the interlamellar connections, paired with the weakness of the tissue under shear loading, is suggestive that shear stress within the tissue may contribute to ATAA dissection.
SUBMITTER: Korenczuk CE
PROVIDER: S-EPMC7104749 | biostudies-literature | 2019 Oct
REPOSITORIES: biostudies-literature
ACCESS DATA