Unknown

Dataset Information

0

Enhanced magnetic modulation of light polarization exploiting hybridization with multipolar dark plasmons in magnetoplasmonic nanocavities.


ABSTRACT: Enhancing magneto-optical effects is crucial for reducing the size of key photonic devices based on the non-reciprocal propagation of light and to enable active nanophotonics. Here, we disclose a currently unexplored approach that exploits hybridization with multipolar dark modes in specially designed magnetoplasmonic nanocavities to achieve a large enhancement of the magneto-optically induced modulation of light polarization. The broken geometrical symmetry of the design enables coupling with free-space light and hybridization of the multipolar dark modes of a plasmonic ring nanoresonator with the dipolar localized plasmon resonance of the ferromagnetic disk placed inside the ring. This hybridization results in a low-radiant multipolar Fano resonance that drives a strongly enhanced magneto-optically induced localized plasmon. The large amplification of the magneto-optical response of the nanocavity is the result of the large magneto-optically induced change in light polarization produced by the strongly enhanced radiant magneto-optical dipole, which is achieved by avoiding the simultaneous enhancement of re-emitted light with incident polarization by the multipolar Fano resonance. The partial compensation of the magneto-optically induced polarization change caused by the large re-emission of light with the original polarization is a critical limitation of the magnetoplasmonic designs explored thus far and that is overcome by the approach proposed here.

SUBMITTER: Lopez-Ortega A 

PROVIDER: S-EPMC7105458 | biostudies-literature | 2020

REPOSITORIES: biostudies-literature

altmetric image

Publications

Enhanced magnetic modulation of light polarization exploiting hybridization with multipolar dark plasmons in magnetoplasmonic nanocavities.

López-Ortega Alberto A   Zapata-Herrera Mario M   Maccaferri Nicolò N   Pancaldi Matteo M   Garcia Mikel M   Chuvilin Andrey A   Vavassori Paolo P  

Light, science & applications 20200330


Enhancing magneto-optical effects is crucial for reducing the size of key photonic devices based on the non-reciprocal propagation of light and to enable active nanophotonics. Here, we disclose a currently unexplored approach that exploits hybridization with multipolar dark modes in specially designed magnetoplasmonic nanocavities to achieve a large enhancement of the magneto-optically induced modulation of light polarization. The broken geometrical symmetry of the design enables coupling with f  ...[more]

Similar Datasets

| S-EPMC6628788 | biostudies-literature
| S-EPMC4763218 | biostudies-literature
| S-EPMC4855603 | biostudies-literature
| S-EPMC4788490 | biostudies-literature
| S-EPMC6783483 | biostudies-literature
| S-EPMC3289737 | biostudies-literature
| S-EPMC5705665 | biostudies-literature
| S-EPMC8044191 | biostudies-literature
| S-EPMC7015902 | biostudies-literature
| S-EPMC8190121 | biostudies-literature