Project description:The outbreak of coronavirus disease 2019 (COVID-19) has induced a large number of deaths worldwide. Angiotensin-converting enzyme 2 (ACE2) is the entry receptor for the 2019 novel coronavirus (2019-nCoV) to infect the host cells. Therefore, ACE2 may be an important target for the prevention and treatment of COVID-19. The aim of this study was to investigate the inhibition effect of valaciclovir hydrochloride (VACV), zidovudine (ZDV), saquinavir (SQV), and efavirenz (EFV) on 2019-nCoV infection. The results of molecule docking and surface plasmon resonance showed that VACV, ZDV, SQV, and EFV could bind to ACE2 protein, with the KD value of (4.33 ± 0.09) e-8 , (6.29 ± 1.12) e-6 , (2.37 ± 0.59) e-5 , and (4.85 ± 1.57) e-5 M, respectively. But only ZDV and EFV prevent the 2019-nCoV spike pseudotyped virus to enter ACE2-HEK293T cells with an EC50 value of 4.30 ± 1.46 and 3.92 ± 1.36 μM, respectively. ZDV and EFV also have a synergistic effect on preventing entry of virus into cells. In conclusion, ZDV and EFV suppress 2019-nCoV infection of ACE2-HEK293T cells by interacting with ACE2.
Project description:The emergence of 2019 novel coronavirus (2019-nCoV) is of global concern and might have emerged from RNA recombination among existing coronaviruses. CoV spike (S) protein which is crucial for receptor binding, membrane fusion via conformational changes, internalization of the virus, host tissue tropism and comprises crucial targets for vaccine development, remain largely uncharacterized. Therefore, the present study has been planned to determine the sequence variation, structural and antigenic divergence of S glycoprotein which may be helpful for the management of 2019-nCoV infection. The sequences of spike glycoprotein of 2019-nCoV and SARS coronavirus (SARS-CoV) were used for the comparison. The sequence variations were determined using EMBOSS Needle pairwise sequence alignment tools. The variation in glycosylation sites was predicted by NetNGlyc 1.0 and validated by N-GlyDE server. Antigenicity was predicted by NetCTL 1.2 and validated by IEDB Analysis Resource server. The structural divergence was determined by using SuperPose Version 1.0 based on cryo-EM structure of the SARS coronavirus spike glycoprotein. Our data suggests that 2019-nCoV is newly spilled coronavirus into humans in China is closely related to SARS-CoV, which has only 12.8% of difference with SARS-CoV in S protein and has 83.9% similarity in minimal receptor-binding domain with SARS-CoV. Addition of a novel glycosylation sites were observed in 2019-nCoV. In addition, antigenic analysis proposes that great antigenic differences exist between both the viral strains, but some of the epitopes were found to be similar between both the S proteins. In spite of the variation in S protein amino acid composition, we found no significant difference in their structures. Collectively, for the first time our results exhibit the emergence of human 2019-nCoV is closely related to predecessor SARS-CoV and provide the evidence that 2019-nCoV uses various novel glycosylation sites as SARS-CoV and may have a potential to become pandemic owing its antigenic discrepancy. Further, demonstration of novel Cytotoxic T lymphocyte epitopes may impart opportunities for the development of peptide based vaccine for the prevention of 2019-nCoV.
Project description:Human coronaviruses (HCoVs), including severe acute respiratory syndrome coronavirus (SARS-CoV) and 2019 novel coronavirus (2019-nCoV, also known as SARS-CoV-2), lead global epidemics with high morbidity and mortality. However, there are currently no effective drugs targeting 2019-nCoV/SARS-CoV-2. Drug repurposing, representing as an effective drug discovery strategy from existing drugs, could shorten the time and reduce the cost compared to de novo drug discovery. In this study, we present an integrative, antiviral drug repurposing methodology implementing a systems pharmacology-based network medicine platform, quantifying the interplay between the HCoV-host interactome and drug targets in the human protein-protein interaction network. Phylogenetic analyses of 15 HCoV whole genomes reveal that 2019-nCoV/SARS-CoV-2 shares the highest nucleotide sequence identity with SARS-CoV (79.7%). Specifically, the envelope and nucleocapsid proteins of 2019-nCoV/SARS-CoV-2 are two evolutionarily conserved regions, having the sequence identities of 96% and 89.6%, respectively, compared to SARS-CoV. Using network proximity analyses of drug targets and HCoV-host interactions in the human interactome, we prioritize 16 potential anti-HCoV repurposable drugs (e.g., melatonin, mercaptopurine, and sirolimus) that are further validated by enrichment analyses of drug-gene signatures and HCoV-induced transcriptomics data in human cell lines. We further identify three potential drug combinations (e.g., sirolimus plus dactinomycin, mercaptopurine plus melatonin, and toremifene plus emodin) captured by the "Complementary Exposure" pattern: the targets of the drugs both hit the HCoV-host subnetwork, but target separate neighborhoods in the human interactome network. In summary, this study offers powerful network-based methodologies for rapid identification of candidate repurposable drugs and potential drug combinations targeting 2019-nCoV/SARS-CoV-2.
Project description:The current outbreak of severe acute respiratory distress syndrome (SARS) or nCOVID-19 pandemic, caused by the coronavirus-2 (CoV-2), continues to wreak havoc globally. As novel vaccines are being discovered and developed, small molecule drugs still constitute a viable treatment option for SARS-CoV-2 infections due to their advantages such as superior patient compliance for oral therapies, reduced manufacturing costs and ease of large scale distribution due to better stability and storage profiles. Discovering new drugs for SARS-CoV-2 infections is a time consuming and expensive proposition. In this regard, drug repurposing is an appealing approach which can provide rapid access to therapeutics with proven record of safety and efficacy. We investigated the drug repurposing potential of a library of dipeptidyl peptidase 4 (DPP4) inhibitors which are currently marketed for type-2 diabetes as treatment option for SARS-CoV-2 infections. These computational studies led to the identification of three marketed DPP4 inhibitors; gemigliptin, linagliptin and evogliptin as potential inhibitors of SARS-CoV-2 Mpro viral cysteine protease. In addition, our computational modeling shows that these drugs have the potential to inhibit other viral cysteine proteases from the beta coronavirus family, including the SAR-CoV Mpro and MERS-CoV CLpro suggesting their potential to be repurposed as broad-spectrum antiviral agents.
Project description:Coronaviruses are single stranded RNA viruses usually present in bats (reservoir hosts), and are generally lethal, highly transmissible, and pathogenic viruses causing sever morbidity and mortality rates in human. Several animals including civets, camels, etc. have been identified as intermediate hosts enabling effective recombination of these viruses to emerge as new virulent and pathogenic strains. Among the seven known human coronaviruses SARS-CoV, MERS-CoV, and SARS-CoV-2 (2019-nCoV) have evolved as severe pathogenic forms infecting the human respiratory tract. About 8096 cases and 774 deaths were reported worldwide with the SARS-CoV infection during year 2002; 2229 cases and 791 deaths were reported for the MERS-CoV that emerged during 2012. Recently ~ 33,849,737 cases and 1,012,742 deaths (data as on 30 Sep 2020) were reported from the recent evolver SARS-CoV-2 infection. Studies on epidemiology and pathogenicity have shown that the viral spread was potentially caused by the contact route especially through the droplets, aerosols, and contaminated fomites. Genomic studies have confirmed the role of the viral spike protein in virulence and pathogenicity. They target the respiratory tract of the human causing severe progressive pneumonia affecting other organs like central nervous system in case of SARS-CoV, severe renal failure in MERS-CoV, and multi-organ failure in SARS-CoV-2. Herein, with respect to current awareness and role of coronaviruses in global public health, we review the various factors involving the origin, evolution, and transmission including the genetic variations observed, epidemiology, and pathogenicity of the three potential coronaviruses variants SARS-CoV, MERS-CoV, and 2019-nCoV.
Project description:The ongoing COVID-19 pandemic represents an unprecedented global health crisis. Here, we report the identification of a synthetic nanobody (sybody) pair, Sb#15 and Sb#68, that can bind simultaneously to the SARS-CoV-2 spike-RBD and efficiently neutralize pseudotyped and live-viruses by interfering with ACE2 interaction. Cryo-EM confirms that Sb#15 and Sb#68 engage two spatially-discrete epitopes, influencing rational design of bispecific and tri-bispecific fusion constructs that exhibit up to 100- and 1000-fold increase in neutralization potency, respectively. Cryo-EM of the sybody-spike complex additionally reveals a novel up-out RBD conformation. While resistant viruses emerge rapidly in the presence of single binders, no escape variants are observed in presence of the bispecific sybody. The multivalent bispecific constructs further increase the neutralization potency against globally-circulating SARS-CoV-2 variants of concern. Our study illustrates the power of multivalency and biparatopic nanobody fusions for the potential development of therapeutic strategies that mitigate the emergence of new SARS-CoV-2 escape mutants.
Project description:The ongoing outbreak of a new coronavirus (2019-nCoV, or severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) has caused an epidemic of the acute respiratory syndrome known as coronavirus disease (COVID-19) in humans. SARS-CoV-2 rapidly spread to multiple regions of China and multiple other countries, posing a serious threat to public health. The spike (S) proteins of SARS-CoV-1 and SARS-CoV-2 may use the same host cellular receptor, angiotensin-converting enzyme 2 (ACE2), for entering host cells. The affinity between ACE2 and the SARS-CoV-2 S protein is much higher than that of ACE2 binding to the SARS-CoV S protein, explaining why SARS-CoV-2 seems to be more readily transmitted from human to human. Here, we report that ACE2 can be significantly upregulated after infection of various viruses, including SARS-CoV-1 and SARS-CoV-2, or by the stimulation with inflammatory cytokines such as interferons. We propose that SARS-CoV-2 may positively induce its cellular entry receptor, ACE2, to accelerate its replication and spread; high inflammatory cytokine levels increase ACE2 expression and act as high-risk factors for developing COVID-19, and the infection of other viruses may increase the risk of SARS-CoV-2 infection. Therefore, drugs targeting ACE2 may be developed for the future emerging infectious diseases caused by this cluster of coronaviruses.
Project description:The ongoing outbreak of the recently emerged 2019 novel coronavirus (nCoV), which has seriously threatened global health security, is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with high morbidity and mortality. Despite the burden of the disease worldwide, still, no licensed vaccine or any specific drug against 2019-nCoV is available. Data from several countries show that few repurposed drugs using existing antiviral drugs have not (so far) been satisfactory and more recently were proven to be even highly toxic. These findings underline an urgent need for preventative and therapeutic interventions designed to target specific aspects of 2019-nCoV. Again the major factor in this urgency is that the process of data acquisition by physical experiment is time-consuming and expensive to obtain. Scientific simulations and more in-depth data analysis permit to validate or refute drug repurposing opportunities predicted via target similarity profiling to speed up the development of a new more effective anti-2019-nCoV therapy especially where in vitro and/or in vivo data are not yet available. In addition, several research programs are being developed, aiming at the exploration of vaccines to prevent and treat the 2019-nCoV. Computational-based technology has given us the tools to explore and identify potentially effective drug and/or vaccine candidates which can effectively shorten the time and reduce the operating cost. The aim of the present review is to address the available information on molecular determinants in disease pathobiology modules and define the computational approaches employed in systematic drug repositioning and vaccine development settings for SARS-CoV-2.
Project description:Single domain shark variable domain of new antigen receptor (VNAR) antibodies can offer a viable alternative to conventional Ig-based monoclonal antibodies in treating COVID-19 disease during the current pandemic. Here we report the identification of neutralizing single domain VNAR antibodies selected against the severe acute respiratory syndrome coronavirus 2 spike protein derived from the Wuhan variant using phage display. We identified 56 unique binding clones that exhibited high affinity and specificity to the spike protein. Of those, 10 showed an ability to block both the spike protein receptor binding domain from the Wuhan variant and the N501Y mutant from interacting with recombinant angiotensin-converting enzyme 2 (ACE2) receptor in vitro. In addition, three antibody clones retained in vitro blocking activity when the E484K spike protein mutant was used. The inhibitory property of the VNAR antibodies was further confirmed for all 10 antibody clones using ACE2 expressing cells with spike protein from the Wuhan variant. The viral neutralizing potential of the VNAR clones was also confirmed for the 10 antibodies tested using live Wuhan variant virus in in vitro cell infectivity assays. Single domain VNAR antibodies, due to their low complexity, small size, unique epitope recognition, and formatting flexibility, should be a useful adjunct to existing antibody approaches to treat COVID-19.
Project description:BackgroundThe novel coronavirus disease (2019-nCoV) has been affecting global health since the end of 2019 and there is no sign that the epidemic is abating . The major issue for controlling the infectious is lacking efficient prevention and therapeutic approaches. Chloroquine (CQ) and Hydroxychloroquine (HCQ) have been reported to treat the disease, but the underlying mechanism remains controversial.PurposeThe objective of this study is to investigate whether CQ and HCQ could be ACE2 blockers and used to inhibit 2019-nCoV virus infection.MethodsIn our study, we used CCK-8 staining, flow cytometry and immunofluorescent staining to evaluate the toxicity and autophagy of CQ and HCQ, respectively, on ACE2 high-expressing HEK293T cells (ACE2h cells). We further analyzed the binding character of CQ and HCQ to ACE2 by molecular docking and surface plasmon resonance (SPR) assays, 2019-nCoV spike pseudotyped virus was also used to observe the viropexis effect of CQ and HCQ in ACE2h cells.ResultsResults showed that HCQ is slightly more toxic to ACE2h cells than CQ. Both CQ and HCQ could bind to ACE2 with KD = (7.31 ± 0.62)e-7 M and (4.82 ± 0.87)e-7 M, respectively. They exhibit equivalent suppression effect for the entrance of 2019-nCoV spike pseudotyped virus into ACE2h cells.ConclusionsCQ and HCQ both inhibit the entrance 2019-nCoV into cells by blocking the binding of the virus with ACE2. Our findings provide novel insights into the molecular mechanism of CQ and HCQ treatment effect on virus infection.