Highly Efficient Nanosized Mesoporous CuMgAl Ternary Oxide Catalyst for Nitro-Alcohol Synthesis: Ultrasound-Assisted Sustainable Green Perspective for the Henry Reaction.
Ontology highlight
ABSTRACT: Nanosized mesoporous CuMgAl ternary oxide catalysts were prepared by thermal decomposition of CuMgAl-layered double hydroxides at 500 °C with nominal Cu/Mg/Al ratios of 1:1:1 (Cu-LDH-I), 1.5:0.5:1 (Cu-LDH-II), and 2:0:1 (Cu-LDH-III). The synthesized catalysts were characterized by inductively coupled plasma atomic emission spectroscopy (ICP-AES), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared (FTIR) spectroscopy, CO2-TPD, and N2 physisorption analysis techniques. The catalytic activity of the synthesized materials was investigated for the Henry reaction between nitromethane and numerous aldehyde derivatives under ultrasonic irradiation. The three CuMgAl ternary oxide catalysts exhibited a high catalytic activity, forming nitro alcohol products with 100% atom economy. The CuMgAl-I catalyst derived from Cu-LDH-I offered high turnover frequencies (TOFs in the synthesis of all of the nitro alcohols in shorter reaction times). The superior catalytic activity of the CuMgAl-I sample is attributed to the synergistic effect between the physicochemical properties of the catalysts and ultrasonic irradiation. The HRTEM analysis of the used CuMgAl-I catalyst revealed the evidence for the cavitation collapse, which causes localized deformation and surface erosion. Moreover, the synthesized catalysts also exhibited robust sustainable activity that resisted deactivation over repeated usage. The present example of ultrasonic-assisted catalyzed organic synthesis represents a novel strategy for the solvent-free green synthesis of nitro-alcohols by the Henry reaction with 100% atom economy.
SUBMITTER: Mokhtar M
PROVIDER: S-EPMC7114621 | biostudies-literature | 2020 Mar
REPOSITORIES: biostudies-literature
ACCESS DATA