Controlling Cu Migration on Resistive Switching, Artificial Synapse, and Glucose/Saliva Detection by Using an Optimized AlO x Interfacial Layer in a-CO x -Based Conductive Bridge Random Access Memory.
Ontology highlight
ABSTRACT: The Cu migration is controlled by using an optimized AlO x interfacial layer, and effects on resistive switching performance, artificial synapse, and human saliva detection in an amorphous-oxygenated-carbon (a-CO x )-based CBRAM platform have been investigated for the first time. The 4 nm-thick AlO x layer in the Cu/AlO x /a-CO x /TiN x O y /TiN structure shows consecutive >2000 DC switching, tight distribution of SET/RESET voltages, a long program/erase (P/E) endurance of >109 cycles at a low operation current of 300 ?A, and artificial synaptic characteristics under a small pulse width of 100 ns. After a P/E endurance of >108 cycles, the Cu migration is observed by both ex situ high-resolution transmission electron microscopy and energy-dispersive X-ray spectroscopy mapping images. Furthermore, the optimized Cu/AlO x /a-CO x /TiN x O y /TiN CBRAM detects glucose with a low concentration of 1 pM, and real-time measurement of human saliva with a small sample volume of 1 ?L is also detected repeatedly in vitro. This is owing to oxidation-reduction of Cu electrode, and the switching mechanism is explored. Therefore, this CBRAM device is beneficial for future artificial intelligence application.
SUBMITTER: Ginnaram S
PROVIDER: S-EPMC7114759 | biostudies-literature | 2020 Mar
REPOSITORIES: biostudies-literature
ACCESS DATA