Unknown

Dataset Information

0

Lifestyle mediates the role of nutrient-sensing pathways in cognitive aging: cellular and epidemiological evidence.


ABSTRACT: Aging induces cellular and molecular changes including modification of stem cell pools. In particular, alterations in aging neural stem cells (NSCs) are linked to age-related cognitive decline which can be modulated by lifestyle. Nutrient-sensing pathways provide a molecular basis for the link between lifestyle and cognitive decline. Adopting a back-translation strategy using stem cell biology to inform epidemiological analyses, here we show associations between cellular readouts of NSC maintenance and expression levels of nutrient-sensing genes following NSC exposure to aging human serum as well as morphological and gene expression alterations following repeated passaging. Epidemiological analyses on the identified genes showed associations between polymorphisms in SIRT1 and ABTB1 and cognitive performance as well as interactions between SIRT1 genotype and physical activity and between GRB10 genotype and adherence to a Mediterranean diet. Our study contributes to the understanding of neural stem cell molecular mechanisms underlying human cognitive aging and hints at lifestyle modifiable factors.

SUBMITTER: de Lucia C 

PROVIDER: S-EPMC7118127 | biostudies-literature | 2020 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Lifestyle mediates the role of nutrient-sensing pathways in cognitive aging: cellular and epidemiological evidence.

de Lucia Chiara C   Murphy Tytus T   Steves Claire J CJ   Dobson Richard J B RJB   Proitsi Petroula P   Thuret Sandrine S  

Communications biology 20200402 1


Aging induces cellular and molecular changes including modification of stem cell pools. In particular, alterations in aging neural stem cells (NSCs) are linked to age-related cognitive decline which can be modulated by lifestyle. Nutrient-sensing pathways provide a molecular basis for the link between lifestyle and cognitive decline. Adopting a back-translation strategy using stem cell biology to inform epidemiological analyses, here we show associations between cellular readouts of NSC maintena  ...[more]

Similar Datasets

| S-EPMC9993052 | biostudies-literature
| S-EPMC4096557 | biostudies-literature
| S-EPMC5440210 | biostudies-other
| S-EPMC7358504 | biostudies-literature
| S-EPMC10702235 | biostudies-literature
| S-EPMC7906181 | biostudies-literature
| S-EPMC3280054 | biostudies-literature
| S-EPMC5520722 | biostudies-literature
| S-EPMC6899909 | biostudies-literature
| S-EPMC2857321 | biostudies-literature