Great Plains Societal Considerations : Impacts and Consequences, Vulnerability and Risk, Adaptive Capacity, Response Options
Ontology highlight
ABSTRACT: A variety of factors related to climate variability and change will impact the Great Plains across human and ecological communities. The changes and associated stress are triggering response strategies and other mitigation and adaptation measures from land managers, government officials and staff, and various industries. The impacts and responses address water, energy, and other essential resources for both human and environmental well-being.
Project description:Fire use has played an important role in human evolution and subsequent dispersals across the globe, yet the relative importance of human activity and climate on fire regimes is controversial. This is particularly true for historical fire regimes of the Americas, where indigenous groups used fire for myriad reasons but paleofire records indicate strong climate-fire relationships. In North American grasslands, decadal-scale wet periods facilitated widespread fire activity because of the abundance of fuel promoted by pluvial episodes. In these settings, human impacts on fire regimes are assumed to be independent of climate, thereby diminishing the strength of climate-fire relationships. We used an offsite geoarchaeological approach to link terrestrial records of prairie fire activity with spatially related archaeological features (driveline complexes) used for intensive, communal bison hunting in north-central Montana. Radiocarbon-dated charcoal layers from alluvial and colluvial deposits associated with driveline complexes indicate that peak fire activity over the past millennium occurred coincident with the use of these features (ca. 1100-1650 CE). However, comparison of dated fire deposits with Palmer Drought Severity Index reconstructions reveal strong climate-fire linkages. More than half of all charcoal layers coincide with modest pluvial episodes, suggesting that fire use by indigenous hunters enhanced the effects of climate variability on prairie fire regimes. These results indicate that relatively small, mobile human populations can impact natural fire regimes, even in pyrogeographic settings in which climate exerts strong, top-down controls on fuels.
Project description:Ground beetles are natural predators of insect pests and small seeds in agroecosystems. In semiarid cropping systems of the Northern Great Plains, there is a lack of knowledge to how ground beetles are affected by diversified cover crop rotations. In a 2-yr study (2018 and 2019), our experiment was a restricted-randomization strip-plot design, comprising summer fallow, an early-season cover crop mixture (five species), and a mid-season cover crop mixture (seven species), with three cover crop termination methods (i.e., herbicide, grazing, and haying). Using pitfall traps, we sampled ground beetles in five 48-h intervals throughout the growing season (n = 135 per year) using growing degree day (GDD) accumulations to better understand changes to ground beetle communities. Data analysis included the use of linear mixed-effects models, perMANOVA, and non-metric multidimensional scaling ordinations. We did not observe differences among cover crop termination methods; however, activity density in the early-season cover crop mixture decreased and in summer fallow increased throughout the growing season, whereas the mid-season cover crop mixture peaked in the middle of the summer. Ground beetle richness and evenness showed a nonlinear tendency, peaking in the middle of the growing season, with marginal differences between cover crops or fallow after the termination events. Also, differences in ground beetle composition were greatest in the early- and mid-season cover crop mixtures earlier in the growing season. Our study supports the use of cover crop mixtures to enhance ground beetle communities, with potential implications for pest management in dryland cropping systems.
Project description:Climate change vulnerability assessment (CCVA) has become a mainstay conservation decision support tool. CCVAs are recommended to incorporate three elements of vulnerability - exposure, sensitivity and adaptive capacity - yet, lack of data frequently leads to the latter being excluded. Further, weighted or unweighted scoring schemes, based on expert opinion, may be applied. Comparisons of these approaches are rare. In a CCVA for 17 Australian lizard species, we show that membership within three vulnerability categories (low, medium and high) generally remained similar regardless of the framework or scoring scheme. There was one exception however, where, under the warm/dry scenario for 2070, including adaptive capacity lead to five fewer species being classified as highly vulnerable. Two species, Eulamprus leuraensis and E. kosciuskoi, were consistently ranked the most vulnerable, primarily due to projected losses in climatically suitable habitat, narrow thermal tolerance and specialist habitat requirements. Our findings provide relevant information for prioritizing target species for conservation and choosing appropriate conservation actions. We conclude that for the species included in this study, the framework and scoring scheme used had little impact on the identification of the most vulnerable species. We caution, however, that this outcome may not apply to other taxa or regions.
Project description:The clinical responses to targeted drugs are often transient and do not always translate into meaningful overall survival due to the development of resistance. We discuss here that the greater power of drug resistant cells can be associated with significant newly-acquired vulnerabilities that can be exploited therapeutically.
Project description:Stocking rate is a fundamental management factor that has major impacts on animal performance, profitability, and long-term sustainability of native range ecosystems. This research was conducted to determine the effects of stocking rate on performance and economics of growing steers grazing a mixed-grass prairie on a rolling upland red shale ecological site at the Marvin Klemme Range Research Station (35° 25' N 99° 3' W). The recommended sustainable stocking rate at this location is suggested to be 25 animal unit days (AUD)/ha. Steers [n = 836, initial body weight (BW) ± SD = 216 ± 11.7 kg] grazed at seven stocking rates ranging from 4.13 ha/steer to 1.83 ha/steer over a 7-yr period, from 1990 to 1996, with year considered the random replication. During the experimental period, overall climatic conditions were favorable for forage production with average growing season precipitation of 118% of the long-term average over the 7-yr experiment, and only 1 yr (1994 with only 57% of the long-term average) with growing season precipitation substantially less than the long-term average. Over the entire summer grazing season, average daily gain (ADG) decreased linearly (P < 0.01) with increasing stocking rate, such that for each additional hectare available per steer ADG increased by 0.05 kg/d (R 2 = 0.88). Contrary to ADG, BW gain per hectare over the grazing season increased linearly (P < 0.01) with increasing stocking rate, as stocking rate increased from 4.13 ha/steer to 1.83 ha/steer BW gain per hectare doubled from 33.1 kg/ha to 66.8 kg/ha, respectively. With land costs included in the economic analysis, net return per hectare increased linearly (P < 0.01) from $13 [U.S. Dollars [USD]) at the 4.13 ha/steer to $52/ha at the 1.83 ha/steer. For each additional hectare per steer, net return was reduced by $15.80 (USD)/steer and $15.70 (USD)/ha. In favorable climatic conditions, such as during this 7-yr experiment, economically optimal stocking rates can be more than doubled compared with the stocking rate recommended by the United States Department of Agriculture (USDA) Soil Conservation Service. Increasing stocking rates decrease individual animal performance but maximize BW gain per hectare, which leads to the increasing economic returns observed. Research is needed to determine the long-term implications of these stocking rates during unfavorable growing conditions and setting stocking rates based on seasonal weather patterns and extended weather outlook predictions.
Project description:BackgroundCOVID-19 created unparalleled challenges for vulnerable communities, especially among American Indians and Alaska Natives. An effective COVID-19 response requires a tribally driven effort to understand the perspectives of Tribal members on testing and to ensure that delivery strategies are grounded in the cultural values, traditions, and experiences of the Tribes.MethodsWe conducted a cross-sectional, anonymous survey in October 2021 using established methods to reach Tribal members residing in three Reservations in the Great Plains (N = 679). Multivariate analyses were conducted using logistic regression to assess the association between independent variables and COVID-19 testing uptake after adjusting for confounding.ResultsAfter multivariate adjustment, a respondent's employment status, ability to isolate if diagnosed with COVID-19, and endorsing that COVID-19 testing is only needed if one has symptoms were significantly correlated with having been previously tested for COVID-19. Participants without a full-time job were about half as likely to have been tested for COVID-19 compared to those with full-time jobs. Participants who reported not being able to isolate if they tested positive for COVID-19 and participants who did not think testing was needed if asymptomatic were also half as likely to be tested.ConclusionsEnsuring that everyone has the ability to isolate, that people who are not working have easy access to testing, and that everyone understands the value of testing after exposure are key steps to maximizing testing uptake. Efforts will only be successful if there is continued investment in programs that provide free testing access for everyone on Reservations.
Project description:Vulnerability assessments have often invoked sustainable livelihoods theory to support the quantification of adaptive capacity based on the availability of capital--social, human, physical, natural, and financial. However, the assumption that increased availability of these capitals confers greater adaptive capacity remains largely untested. We quantified the relationship between commonly used capital indicators and an empirical index of adaptive capacity (ACI) in the context of vulnerability of Australian wheat production to climate variability and change. We calculated ACI by comparing actual yields from farm survey data to climate-driven expected yields estimated by a crop model for 12 regions in Australia's wheat-sheep zone from 1991-2010. We then compiled data for 24 typical indicators used in vulnerability analyses, spanning the five capitals. We analyzed the ACI and used regression techniques to identify related capital indicators. Between regions, mean ACI was not significantly different but variance over time was. ACI was higher in dry years and lower in wet years suggesting that farm adaptive strategies are geared towards mitigating losses rather than capitalizing on opportunity. Only six of the 24 capital indicators were significantly related to adaptive capacity in a way predicted by theory. Another four indicators were significantly related to adaptive capacity but of the opposite sign, countering our theory-driven expectation. We conclude that the deductive, theory-based use of capitals to define adaptive capacity and vulnerability should be more circumspect. Assessments need to be more evidence-based, first testing the relevance and influence of capital metrics on adaptive capacity for the specific system of interest. This will more effectively direct policy and targeting of investment to mitigate agro-climatic vulnerability.
Project description:Bison (Bison bison) are one of the few terrestrial megafauna to survive the transition into the Holocene and provide a unique opportunity to study a species on a broad spatiotemporal scale. Today, bison are primarily managed in small and isolated herds with little known about their ancestral ecology. We studied the carbon and nitrogen isotopes of Northern Great Plains bison from the terminal Pleistocene and throughout the Holocene to gain insight into their paleoecology. This time span is contemporary with the first population bottleneck experienced by bison at the end of the Pleistocene and includes the second bottleneck which occurred in the late 19th century. Results were compared with modern bison herd isotopic values from Theodore Roosevelt National Park (TRNP). Patterns of isotopic variation found in bison over time indicate significant (?13C p?=?0.0008, ?15N p?=?0.002) differences in diet composition and correlate with climate throughout the Holocene. Isotopic relationships described here reveal the plasticity of ancient bison in unrestricted rangelands during periods of climatic fluctuations. Managers at TRNP and elsewhere should pursue opportunities to expand bison range to maximize forage opportunities for the species in the face of future environmental change.