Project description:This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2020. Other selected articles can be found online at https://www.biomedcentral.com/collections/annualupdate2020. Further information about the Annual Update in Intensive Care and Emergency Medicine is available from http://www.springer.com/series/8901.
Project description:ObjectivesLung- and diaphragm-protective ventilation is a novel concept that aims to limit the detrimental effects of mechanical ventilation on the diaphragm while remaining within limits of lung-protective ventilation. The premise is that low breathing effort under mechanical ventilation causes diaphragm atrophy, whereas excessive breathing effort induces diaphragm and lung injury. In a proof-of-concept study, we aimed to assess whether titration of inspiratory support based on diaphragm effort increases the time that patients have effort in a predefined "diaphragm-protective" range, without compromising lung-protective ventilation.DesignRandomized clinical trial.SettingMixed medical-surgical ICU in a tertiary academic hospital in the Netherlands.PatientsPatients (n = 40) with respiratory failure ventilated in a partially-supported mode.InterventionsIn the intervention group, inspiratory support was titrated hourly to obtain transdiaphragmatic pressure swings in the predefined "diaphragm-protective" range (3-12 cm H2O). The control group received standard-of-care.Measurements and main resultsTransdiaphragmatic pressure, transpulmonary pressure, and tidal volume were monitored continuously for 24 hours in both groups. In the intervention group, more breaths were within "diaphragm-protective" range compared with the control group (median 81%; interquartile range [64-86%] vs 35% [16-60%], respectively; p < 0.001). Dynamic transpulmonary pressures (20.5 ± 7.1 vs 18.5 ± 7.0 cm H2O; p = 0.321) and tidal volumes (7.56 ± 1.47 vs 7.54 ± 1.22 mL/kg; p = 0.961) were not different in the intervention and control group, respectively.ConclusionsTitration of inspiratory support based on patient breathing effort greatly increased the time that patients had diaphragm effort in the predefined "diaphragm-protective" range without compromising tidal volumes and transpulmonary pressures. This study provides a strong rationale for further studies powered on patient-centered outcomes.
Project description:BackgroundWe hypothesized that a decrease in frequency of controlled breaths during biphasic positive airway pressure (BIVENT), associated with an increase in spontaneous breaths, whether pressure support (PSV)-assisted or not, would mitigate lung and diaphragm damage in mild experimental acute respiratory distress syndrome (ARDS).Materials and methodsWistar rats received Escherichia coli lipopolysaccharide intratracheally. After 24 hours, animals were randomly assigned to: 1) BIVENT-100+PSV0%: airway pressure (Phigh) adjusted to VT = 6 mL/kg and frequency of controlled breaths (f) = 100 bpm; 2) BIVENT-50+PSV0%: Phigh adjusted to VT = 6 mL/kg and f = 50 bpm; 3) BIVENT-50+PSV50% (PSV set to half the Phigh reference value, i.e., PSV50%); or 4) BIVENT-50+PSV100% (PSV equal to Phigh reference value, i.e., PSV100%). Positive end-expiratory pressure (Plow) was equal to 5 cmH2O. Nonventilated animals were used for lung and diaphragm histology and molecular biology analysis.ResultsBIVENT-50+PSV0%, compared to BIVENT-100+PSV0%, reduced the diffuse alveolar damage (DAD) score, the expression of amphiregulin (marker of alveolar stretch) and muscle atrophy F-box (marker of diaphragm atrophy). In BIVENT-50 groups, the increase in PSV (BIVENT-50+PSV50% versus BIVENT-50+PSV100%) yielded better lung mechanics and less alveolar collapse, interstitial edema, cumulative DAD score, as well as gene expressions associated with lung inflammation, epithelial and endothelial cell damage in lung tissue, and muscle ring finger protein 1 (marker of muscle proteolysis) in diaphragm. Transpulmonary peak pressure (Ppeak,L) and pressure-time product per minute (PTPmin) at Phigh were associated with lung damage, while increased spontaneous breathing at Plow did not promote lung injury.ConclusionIn the ARDS model used herein, during BIVENT, the level of PSV and the phase of the respiratory cycle in which the inspiratory effort occurs affected lung and diaphragm damage. Partitioning of inspiratory effort and transpulmonary pressure in spontaneous breaths at Plow and Phigh is required to minimize VILI.
Project description:ObjectiveTo evaluate the accuracy of respiratory mechanics using dynamic signal analysis during noninvasive pressure support ventilation (PSV).MethodsA Respironics V60 ventilator was connected to an active lung simulator to model normal, restrictive, obstructive, and mixed obstructive and restrictive profiles. The PSV was adjusted to maintain tidal volumes (VT) that achieved 5.0, 7.0, and 10.0 mL/kg body weight, and the positive end-expiration pressure (PEEP) was set to 5 cmH2O. Ventilator performance was evaluated by measuring the flow, airway pressure, and volume. The system compliance (Crs) and airway resistance (inspiratory and expiratory resistance, Rinsp and Rexp, respectively) were calculated.ResultsUnder active breathing conditions, the Crs was overestimated in the normal and restrictive models, and it decreased with an increasing pressure support (PS) level. The Rinsp calculated error was approximately 10% at 10.0 mL/kg of VT, and similar results were obtained for the calculated Rexp at 7.0 mL/kg of VT.ConclusionUsing dynamic signal analysis, appropriate tidal volume was beneficial for Rrs, especially for estimating Rexp during assisted ventilation. The Crs measurement was also relatively accurate in obstructive conditions.
Project description:ObjectivesWe compared the risk of environmental contamination among patients with COVID-19 who received high-flow nasal cannula (HFNC), noninvasive ventilation (NIV), and conventional oxygen therapy (COT) via nasal cannula for respiratory failure.MethodsAir was sampled from the hospital isolation rooms with 12 air changes/hr where 26 patients with COVID-19 received HFNC (up to 60 l/min, n = 6), NIV (n = 6), or COT (up to 5 l/min of oxygen, n = 14). Surface samples were collected from 16 patients during air sampling.ResultsViral RNA was detected at comparable frequency in air samples collected from patients receiving HFNC (3/54, 5.6%), NIV (1/54, 1.9%), and COT (4/117, 3.4%) (P = 0.579). Similarly, the risk of surface contamination was comparable among patients receiving HFNC (3/46, 6.5%), NIV (14/72, 19.4%), and COT (8/59, 13.6%) (P = 0.143). An increment in the cyclic thresholds of the upper respiratory specimen prior to air sampling was associated with a reduced SARS-CoV-2 detection risk in air (odds ratio 0.83 [95% confidence interval 0.69-0.96], P = 0.027) by univariate logistic regression.ConclusionNo increased risk of environmental contamination in the isolation rooms was observed in the use of HFNC and NIV vs COT among patients with COVID-19 with respiratory failure. Higher viral load in the respiratory samples was associated with positive air samples.
Project description:ObjectiveTo determine whether the duration of noninvasive respiratory support exposure is associated with bronchopulmonary dysplasia (BPD) or death in preterm infants.MethodsMulticenter, retrospective study of infants born at <29 weeks' gestation. The association between days on noninvasive respiratory support and BPD or death was determined using instrumental variable techniques and generalized propensity score matching to account for potential confounding by illness severity.ResultsAmong 6268 infants 36% developed BPD or died. The median duration of noninvasive respiratory support was 18 days. There was inconsistency in the association between noninvasive support and BPD or death when analyzed by instrumental variable techniques (Average Marginal Effect -0.37; 95% CI -1.23 to 0.50) and generalized propensity score matching (Average Marginal Effect 0.46; 95% CI 0.33 to 0.60).ConclusionFindings on the association between duration of exposure to noninvasive respiratory support and the development of BPD or death were inconclusive.ClinicaltrialsGov idGeneric Database:NCT00063063.
Project description:The significant mortality rate and prolonged ventilator days associated with invasive mechanical ventilation (IMV) in patients with severe COVID-19 have incited a debate surrounding the use of noninvasive respiratory support (NIRS) (i.e., HFNC, CPAP, NIV) as a potential treatment strategy. Central to this debate is the role of NIRS in preventing intubation in patients with mild respiratory disease and the potential beneficial effects on both patient outcome and resource utilization. However, there remains valid concern that use of NIRS may prolong time to intubation and lung protective ventilation in patients with more advanced disease, thereby worsening respiratory mechanics via self-inflicted lung injury. In addition, the risk of aerosolization with the use of NIRS has the potential to increase healthcare worker (HCW) exposure to the virus. We review the existing literature with a focus on rationale, patient selection and outcomes associated with the use of NIRS in COVID-19 and prior pandemics, as well as in patients with acute respiratory failure due to different etiologies (i.e., COPD, cardiogenic pulmonary edema, etc.) to understand the potential role of NIRS in COVID-19 patients. Based on this analysis we suggest an algorithm for NIRS in COVID-19 patients which includes indications and contraindications for use, monitoring recommendations, systems-based practices to reduce HCW exposure, and predictors of NIRS failure. We also discuss future research priorities for addressing unanswered questions regarding NIRS use in COVID-19 with the goal of improving patient outcomes.
Project description:BackgroundLung- and diaphragm-protective (LDP) ventilation may prevent diaphragm atrophy and patient self-inflicted lung injury in acute respiratory failure, but feasibility is uncertain. The objectives of this study were to estimate the proportion of patients achieving LDP targets in different modes of ventilation, and to identify predictors of need for extracorporeal carbon dioxide removal (ECCO2R) to achieve LDP targets.MethodsAn in silico clinical trial was conducted using a previously published mathematical model of patient-ventilator interaction in a simulated patient population (n = 5000) with clinically relevant physiological characteristics. Ventilation and sedation were titrated according to a pre-defined algorithm in pressure support ventilation (PSV) and proportional assist ventilation (PAV+) modes, with or without adjunctive ECCO2R, and using ECCO2R alone (without ventilation or sedation). Random forest modelling was employed to identify patient-level factors associated with achieving targets.ResultsAfter titration, the proportion of patients achieving targets was lower in PAV+ vs. PSV (37% vs. 43%, odds ratio 0.78, 95% CI 0.73-0.85). Adjunctive ECCO2R substantially increased the probability of achieving targets in both PSV and PAV+ (85% vs. 84%). ECCO2R alone without ventilation or sedation achieved LDP targets in 9%. The main determinants of success without ECCO2R were lung compliance, ventilatory ratio, and strong ion difference. In silico trial results corresponded closely with the results obtained in a clinical trial of the LDP titration algorithm (n = 30).ConclusionsIn this in silico trial, many patients required ECCO2R in combination with mechanical ventilation and sedation to achieve LDP targets. ECCO2R increased the probability of achieving LDP targets in patients with intermediate degrees of derangement in elastance and ventilatory ratio.