Unknown

Dataset Information

0

Direct experimental evidence of physical origin of electronic phase separation in manganites.


ABSTRACT: Electronic phase separation in complex oxides is the inhomogeneous spatial distribution of electronic phases, involving length scales much larger than those of structural defects or nonuniform distribution of chemical dopants. While experimental efforts focused on phase separation and established its correlation with nonlinear responses under external stimuli, it remains controversial whether phase separation requires quenched disorder for its realization. Early theory predicted that if perfectly "clean" samples could be grown, both phase separation and nonlinearities would be replaced by a bicritical-like phase diagram. Here, using a layer-by-layer superlattice growth technique we fabricate a fully chemically ordered "tricolor" manganite superlattice, and compare its properties with those of isovalent alloyed manganite films. Remarkably, the fully ordered manganite does not exhibit phase separation, while its presence is pronounced in the alloy. This suggests that chemical-doping-induced disorder is crucial to stabilize the potentially useful nonlinear responses of manganites, as theory predicted.

SUBMITTER: Miao T 

PROVIDER: S-EPMC7132319 | biostudies-literature | 2020 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Direct experimental evidence of physical origin of electronic phase separation in manganites.

Miao Tian T   Deng Lina L   Yang Wenting W   Ni Jinyang J   Zheng Changlin C   Etheridge Joanne J   Wang Shasha S   Liu Hao H   Lin Hanxuan H   Yu Yang Y   Shi Qian Q   Cai Peng P   Zhu Yinyan Y   Yang Tieying T   Zhang Xingmin X   Gao Xingyu X   Xi Chuanying C   Tian Mingliang M   Wu Xiaoshan X   Xiang Hongjun H   Dagotto Elbio E   Yin Lifeng L   Shen Jian J  

Proceedings of the National Academy of Sciences of the United States of America 20200316 13


Electronic phase separation in complex oxides is the inhomogeneous spatial distribution of electronic phases, involving length scales much larger than those of structural defects or nonuniform distribution of chemical dopants. While experimental efforts focused on phase separation and established its correlation with nonlinear responses under external stimuli, it remains controversial whether phase separation requires quenched disorder for its realization. Early theory predicted that if perfectl  ...[more]

Similar Datasets

| S-EPMC4829688 | biostudies-literature
| S-EPMC6713754 | biostudies-literature
| S-EPMC4083293 | biostudies-other
| S-EPMC11003993 | biostudies-literature
| S-EPMC3950641 | biostudies-other
| S-EPMC4561900 | biostudies-literature
| S-EPMC7952089 | biostudies-literature
| S-EPMC8237649 | biostudies-literature
| S-EPMC7782741 | biostudies-literature
| S-EPMC6522219 | biostudies-literature