Unknown

Dataset Information

0

Combination of highly efficient microflora to degrade paint spray exhaust gas.


ABSTRACT: Spray paint exhaust gas contains recalcitrant volatile organic compounds (VOCs), such as benzene, toluene and xylene (BTX). Treating BTX with a biofilter often achieves unsatisfactory results because the biofilter lacks efficient microbial community. In this work, three strains for BTX degradation were isolated and identified as Pseudomonas putida, Bacillus cereus and Bacillus subtilis by using 16S rRNA sequencing technology. A consortium of highly efficient microbial community was then constructed on a stable biofilm to treat BTX in a biofilter. A relatively suitable ratio of P. putida, B. cereus and B. subtilis was obtained. An efficiency of over 90% was achieved in the biofilter with VOC concentration of 1000 mg/m3 through inoculation with the microbial community after only 10 days of operation. Thus, fast start-up of the biofilter was realised. Analysis of intermediate products by gas chromatography-mass spectrometry indicated that BTX was degraded into short-chain aldehydes or acids via ring opening reactions.

SUBMITTER: Lan H 

PROVIDER: S-EPMC7138788 | biostudies-literature | 2020 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Combination of highly efficient microflora to degrade paint spray exhaust gas.

Lan Huixia H   Qi Shixin S   Yang Da D   Zhang Heng H   Liu Jianbo J   Sun Yanhui Y  

Scientific reports 20200407 1


Spray paint exhaust gas contains recalcitrant volatile organic compounds (VOCs), such as benzene, toluene and xylene (BTX). Treating BTX with a biofilter often achieves unsatisfactory results because the biofilter lacks efficient microbial community. In this work, three strains for BTX degradation were isolated and identified as Pseudomonas putida, Bacillus cereus and Bacillus subtilis by using 16S rRNA sequencing technology. A consortium of highly efficient microbial community was then construc  ...[more]

Similar Datasets

| S-EPMC6599775 | biostudies-literature
| S-EPMC5765169 | biostudies-literature
| S-EPMC8066371 | biostudies-literature
| S-EPMC7541071 | biostudies-literature
| S-EPMC10309622 | biostudies-literature
| S-EPMC4137573 | biostudies-literature
| S-EPMC9240628 | biostudies-literature
| S-EPMC5380918 | biostudies-literature
| S-EPMC9796360 | biostudies-literature
| S-EPMC9067026 | biostudies-literature