Isolation, Characterization, and Screening of Antimicrobial-Producing Actinomycetes from Soil Samples.
Ontology highlight
ABSTRACT: Actinomycetes are Gram-positive, facultative anaerobic fungus-like filamentous bacteria which remain on the top of the natural antibiotic producers. Due to the climatic and geographical diversity of Nepal, a wide range of microorganisms with potent source of antimicrobials are available. The objective of this study was to isolate, identify, and screen the potential antimicrobial-producing actinomycetes from soils covering different altitude range of Nepal. Forty-one isolates of actinomycetes were isolated from 11 soil samples collected from different locations in Nepal with altitude ranging from 1500 to 4380 meters. The isolates were identified on the basis of morphological study, different sugar utilization, protein utilization, and hydrolysis tests. They were also characterized on the basis of temperature and pH. Primary screening for antimicrobial activity was carried out against several test organisms: Staphylococcus aureus (ATCC 25923), Escherichia coli (ATCC 25922), Klebsiella pneumoniae (ATCC 700603), and Pseudomonas aeruginosa (ATCC 27853) by the perpendicular streaking method, and secondary screening was carried out by the agar well diffusion method using ethyl acetate for solvent extraction. 70.7% of the isolates were identified as Streptomyces spp., 19.5% as Nocardia spp., and 9.5% as Micromonospora spp. 43.34% of actinomycete isolates was found to be potent antimicrobial producers from the primary screening among which 46.34% were effective against Gram-positive and 12.19% against Gram-negative test organisms. Isolate C7 (Micromonospora spp.) showed the best broad-spectrum antimicrobial activity during secondary screening. A total of 11 different types of pigments were observed to be produced by different isolates, of which, the yellow pigment was the most prominent. The association between elevation, pH, and pigment with the antimicrobial production was found to be insignificant. This finding can be of importance for further investigation towards obtaining broad-spectrum antibiotics for therapeutic purpose.
SUBMITTER: Sapkota A
PROVIDER: S-EPMC7139855 | biostudies-literature | 2020
REPOSITORIES: biostudies-literature
ACCESS DATA