ABSTRACT: Urease is an enzyme produced by ureolytic microorganisms which hydrolyzes urea into ammonia and carbon dioxide. Microbial urease has wide applications in biotechnology, agriculture, medicine, construction, and geotechnical engineering. Urease-producing microbes can be isolated from different ecosystems such as soil, oceans, and various geological formations. The aim of this study was to isolate and characterize rapid urease-producing bacteria from Ethiopian soils. Using qualitative urease activity assay, twenty urease-producing bacterial isolates were screened and selected. Among these, three expressed urease at high rates as determined by a conductivity assay. The isolates were further characterized with respect to their biochemical, morphological, molecular, and exoenzyme profile characteristics. The active urease-producing bacterial isolates were found to be nonhalophilic to slightly halophilic neutrophiles and aerobic mesophiles with a range of tolerance towards pH (4.0-10.0), NaCl (0.25-5%), and temperature (20-40°C). According to the API ZYM assays, all three isolates were positive for alkaline phosphatase, leucine aryl amidase, acid phosphatase, and naphthol_AS_BI_phosphohydrolase. The closest described relatives of the selected three isolates (Isolate_3, Isolate_7, and Isolate_11) were Bacillus paramycoides, Citrobacter sedlakii, and Enterobacter bugandensis with 16S rRNA gene sequence identity of 99.0, 99.2, and 98.9%, respectively. From the study, it was concluded that the three strains appear to have a relatively higher potential for urease production and be able to grow under a wider range of growth conditions.