Unknown

Dataset Information

0

Lactobacillus Rhamnosus GG Affects the BDNF System in Brain Samples of Wistar Rats with Pepsin-Trypsin-Digested Gliadin (PTG)-Induced Enteropathy.


ABSTRACT: Celiac disease (CD) presents as chronic low-grade inflammation of the small intestine often characterized by psychiatric comorbidities. The brain-derived neurotrophic factor (BDNF), which we have shown to be reduced in the serum of CD patients, acts as the bridge between immune activation and the nervous system adaptive response. Since Lactobacillus has been shown to upregulate BDNF, this study aimed to evaluate whether the administration of Lactobacillus rhamnosus GG (L.GG) could positively affect the brain BDNF system in rats mimicking the CD lesions. Data have shown that the administration of pepsin-trypsin digested gliadin (PTG) and L.GG alter the levels of mature BDNF (mBDNF), as evaluated by Western blotting. PTG provoked a reduction of mBDNF compared to controls, and a compensatory increase of its receptor TrkB. L.GG induced a slight positive effect on mBDNF levels under normal conditions, while it was able to rescue the PTG-induced reduced expression of mBDNF. The curative effect of L.GG was finely tuned, accompanied by the reduction of TrkB, probably to avoid the effect of excessive BDNF.

SUBMITTER: Orlando A 

PROVIDER: S-EPMC7146293 | biostudies-literature | 2020 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

<i>Lactobacillus Rhamnosus</i> GG Affects the BDNF System in Brain Samples of Wistar Rats with Pepsin-Trypsin-Digested Gliadin (PTG)-Induced Enteropathy.

Orlando Antonella A   Chimienti Guglielmina G   Lezza Angela Maria Serena AMS   Pesce Vito V   Gigante Isabella I   D'Attoma Benedetta B   Russo Francesco F  

Nutrients 20200227 3


Celiac disease (CD) presents as chronic low-grade inflammation of the small intestine often characterized by psychiatric comorbidities. The brain-derived neurotrophic factor (BDNF), which we have shown to be reduced in the serum of CD patients, acts as the bridge between immune activation and the nervous system adaptive response. Since <i>Lactobacillus</i> has been shown to upregulate BDNF, this study aimed to evaluate whether the administration of <i>Lactobacillus rhamnosus</i> GG (L.GG) could  ...[more]

Similar Datasets

2013-03-21 | GSE45357 | GEO
| S-EPMC3688875 | biostudies-literature
2013-03-21 | E-GEOD-45357 | biostudies-arrayexpress
| S-EPMC3623246 | biostudies-literature
2011-01-01 | GSE22536 | GEO
2011-08-01 | GSE28903 | GEO
| PRJNA305242 | ENA
| PRJNA309744 | ENA
| PRJEA32195 | ENA
| PRJNA258500 | ENA