Project description:Heart failure (HF) has been known as a global health problem, and cardiac remodeling plays an essential role in the development of HF. We hypothesized that YQWY decoction might exert a cardioprotective effect against myocardium inflammation, fibrosis, and apoptosis via activating the interleukin-10 (IL-10)/Stat3 signaling pathway. To test this hypothesis, the HF model in rats was established by pressure overload through the minimally invasive transverse aortic constriction (MTAC). Echocardiography was performed to assess the left ventricular function of rats. Myocardial fibrosis in rats was observed by Masson and Picrosirius red staining, and the degree of myocardial apoptosis was detected via TUNEL staining. In addition, expression levels of IL-10, tumor necrosis factor-α (TNF-α), Stat3 (P-Stat3), P65 (P-P65), CD68, collagen I, TGF-β, CTGF, Bax, Bcl-2, cleaved caspase-3, and PARP in rat serum and myocardium samples were examined by ELISA, western blot, and immunohistochemistry, respectively. YQWY decoction treatment significantly improved left ventricular function in HF rats, especially in those of the high-dose group (LVEF%: 51.29 ± 5.876 vs. 66.02 ± 1.264, P < 0.01;, LVFS%: 27.75 ± 3.757 vs. 37.76 ± 1.137, P < 0.01). Furthermore, YQWY decoction markedly inhibited MTAC-induced myocardial fibrosis as evidenced by downregulated collagen I, TGF-β, and CTGF in myocardium and alleviated apoptosis (downregulated caspase-3 and PARP and increased Bcl-2/Bax ratio in cardiomyocytes). In addition, YQWY decoction decreased the level of the proinflammatory cytokine TNF-α in both circulating blood and myocardium and attenuated infiltration of inflammatory cells in heart tissue from HF rats. Most importantly, YQWY decoction suppressed MTAC-induced NF-κB activation and phosphorylated Stat3 by upregulating IL-10 in rat heart tissues. Our study showed that YQWY decoction could attenuate MTAC-induced myocardial inflammation, fibrosis, apoptosis, and reverse the impairment of cardiac function in rats by activating the IL-10/Stat3 signaling pathway and improving myocardium remodeling. Our findings suggested a therapeutic potential of YQWY decoction in HF.
Project description:Pulmonary hypertension (PH) is a progressive fatal disease with no cure. Canagliflozin (CANA), a novel medication for diabetes, has been found to have remarkable cardiovascular benefits. However, few studies have addressed the effect and pharmacological mechanism of CANA in the treatment of PH. Therefore, our study aimed to investigate the effect and pharmacological mechanism of CANA in treating PH. First, CANA suppressed increased pulmonary artery pressure, right ventricular hypertrophy, and vascular remodeling in both mouse and rat PH models. Network pharmacology, transcriptomics, and biological results suggested that CANA could ameliorate PH by suppressing excessive oxidative stress and pulmonary artery smooth muscle cell proliferation partially through the activation of PPARγ. Further studies demonstrated that CANA inhibited phosphorylation of PPARγ at Ser225 (a novel serine phosphorylation site in PPARγ), thereby promoting the nuclear translocation of PPARγ and increasing its ability to resist oxidative stress and proliferation. Taken together, our study not only highlighted the potential pharmacological effect of CANA on PH but also revealed that CANA-induced inhibition of PPARγ Ser225 phosphorylation increases its capacity to counteract oxidative stress and inhibits proliferation. These findings may stimulate further research and encourage future clinical trials exploring the therapeutic potential of CANA in PH treatment.
Project description:Background Ventricular arrhythmia after myocardial infarction is the most important risk factor for sudden cardiac death, which poses a serious threat to human health. As the correlation between autonomic nervous systemic dysfunction and heart rhythm abnormality has been gradually revealed, remedies targeting autonomic nervous system dysfunction, especially the sympathetic nerve, have emerged. Among them, renal denervation is noted for its powerful effect on the inhibition of sympathetic nerve activity. We aim to investigate whether renal denervation can reduce ventricular arrhythmia after myocardial infarction and thus decrease the risk of sudden cardiac death. In addition, we explore the potential mechanism with respect to nerve activity and remodeling. Methods and Results Twenty-four beagles were randomized into the control (n=4), renal denervation (n=10), and sham (n=10) groups. Permanent left anterior descending artery ligation was performed to establish myocardial infarction in the latter 2 groups. Animals in the renal denervation group underwent both surgical and chemical renal denervation. Compared with dogs in the sham group, dogs in the renal denervation group demonstrated attenuated effective refractory period shortening and inhomogeneity, flattened restitution curve, increased ventricular threshold, and decreased ventricular arrhythmia. Heart rate variability assessment, catecholamine measurement, and nerve discharge recordings all indicated that renal denervation could reduce whole-body and local tissue sympathetic tone. Tissue analysis revealed a significant decrease in neural remodeling in both the heart and stellate ganglion. Conclusions Surgical and chemical renal denervation decreased whole-body and local tissue sympathetic activity and reversed neural remodeling in the heart and stellate ganglion. Consequently, renal denervation led to beneficial remodeling of the electrophysiological characteristics in the infarction border zone, translating to a decrease in ventricular arrhythmia after myocardial infarction.
Project description:BackgroundAdverse left ventricular remodeling after myocardial infarction (MI) compromises cardiac function and increases heart failure risk. Until now, comprehension of the role transcription factor EB (TFEB) plays after MI is limited.ObjectivesThe purpose of this study was to describe the effects of TFEB on fibroblasts differentiation and extracellular matrix expression after MI.MethodsAAV9 (adeno-associated virus) mediated up- and down-regulated TFEB expressions were generated in C57BL/6 mice two weeks before the MI modeling. Echocardiography, Masson, Sirius red staining immunofluorescence, and wheat germ agglutinin staining were performed at 3 days, and 1, 2, and 4 weeks after MI modeling. Fibroblasts collected from SD neonatal rats were transfected by adenovirus and siRNA, and cell counting kit-8 (CCK8), immunofluorescence, wound healing and Transwell assay were conducted. Myocardial fibrosis-related proteins were identified by Western blot. PNU-74654 (100 ng/mL) was used for 12 hours to inhibit β-catenin-TCF/LEF1 complex.ResultsThe up-regulation of TFEB resulted in reduced fibroblasts proliferation and its differentiation into myofibroblasts in vitro studies. A significant up-regulation of EF and down-regulation of myocyte area was shown in the AAV9-TFEB group. Meanwhile, decreased protein level of α-SMA and collagen I were observed in vitro study. TFEB didn't affect the concentration of β-catenin. Inhibition of TFEB, which promoted cell migration, proliferation and collagen I expression, was counteracted by PNU-74654.ConclusionsTFEB demonstrated potential in restraining fibrosis after MI by inhibiting the Wnt/β-catenin signaling pathway.
Project description:Cell death in MI is the most critical determinant of subsequent left ventricular remodeling and heart failure. Besides apoptosis, autophagy and necroptosis have been recently found to be another two regulated cell death styles. HGF has been reported to have a protective role in MI, but its impact on the three death styles remains unclear. Thus, our study was performed to investigate the distribution of autophagy, apoptosis and necroptosis in cardiac tissues after MI and explore the role and mechanism of Ad-HGF on cardiac remodeling by regulating the three death styles. We firstly showed the distribution of autophagy, apoptosis and necroptosis differs in temporal and spatial context after MI using immunofluorescence. Notably, Ad-HGF treatment improves the cardiac remodeling of SD rats following MI by preserving the heart function, reducing the scar size and aggresomes. Further mechanism study reveals Ad-HGF promotes autophagy and necroptosis and inhibits apoptosis in vivo and in vitro. Co-immunoprecipitation assays showed Ad-HGF treatment significantly decreased the binding of Bcl-2 to Beclin1 but enhanced Bcl-2 binding to Bax in H9c2 cells under hypoxia. Moreover, HGF-induced sequestration of Bax by Bcl-2 allows Bax to become inactive, thereby inhibiting apoptosis. In addition, Ad-HGF markedly increased the formation of Beclin1-Vps34-Atg14L complex, which accounted for promoting autophagy. Both the western blot and activity assay showed Ad-HGF significantly decreased the caspase 8 protein and activity levels, which obligated the cell to undergo necroptosis under hypoxia and block apoptosis. Thus, our findings offer new evidence and strategies for the treatment of MI and post-MI cardiac remodeling.
Project description:Podoplanin, a small mucine-type transmembrane glycoprotein, has been recently shown to be expressed by lymphangiogenic, fibrogenic and mesenchymal progenitor cells in the acutely and chronically infarcted myocardium. Podoplanin binds to CLEC-2, a C-type lectin-like receptor 2 highly expressed by CD11bhigh cells following inflammatory stimuli. Why podoplanin expression appears only after organ injury is currently unknown. Here, we characterize the role of podoplanin in different stages of myocardial repair after infarction and propose a podoplanin-mediated mechanism in the resolution of post-MI inflammatory response and cardiac repair. Neutralization of podoplanin led to significant improvements in the left ventricular functions and scar composition in animals treated with podoplanin neutralizing antibody. The inhibition of the interaction between podoplanin and CLEC-2 expressing immune cells in the heart enhances the cardiac performance, regeneration and angiogenesis post MI. Our data indicates that modulating the interaction between podoplanin positive cells with the immune cells after myocardial infarction positively affects immune cell recruitment and may represent a novel therapeutic target to augment post-MI cardiac repair, regeneration and function.
Project description:Ampelopsin (APL), a major bioactive constituent of Ampelopsis grossedentata, exerts a number of biological effects. Here, we explored the anti-diabetic activity of APL and elucidate the underlying mechanism of this action. In palmitate-induced insulin resistance of L6 myotubes, APL treatment markedly up- regulated phosphorylated insulin receptor substrate-1 and protein kinase B, along with a corresponding increase of glucose uptake capacity. APL treatment also increased expressions of fibroblast growth factor (FGF21) and phosphorylated adenosine 5'-monophosphate -activated protein kinase (p-AMPK), however inhibiting AMPK by Compound C or AMPK siRNA, or blockage of FGF21 by FGF21 siRNA, obviously weakened APL -induced increases of FGF21 and p-AMPK as well as glucose uptake capacity in palmitate -pretreated L6 myotubes. Furthermore, APL could activate PPAR γ resulting in increases of glucose uptake capacity and expressions of FGF21 and p-AMPK in palmitate -pretreated L6 myotubes, whereas all those effects were obviously abolished by addition of GW9662, a specific inhibitor of peroxisome proliferator- activated receptor -γ (PPARγ), and PPARγsiRNA. Using molecular modeling and the luciferase reporter assays, we observed that APL could dock with the catalytic domain of PPARγ and dose-dependently up-regulate PPARγ activity. In summary, APL maybe a potential agonist of PPARγ and promotes insulin sensitization by activating PPARγ and subsequently regulating FGF21- AMPK signaling pathway. These results provide new insights into the protective health effects of APL, especially for the treatment of Type 2 diabetes mellitus.
Project description:BACKGROUND:Trehalose (TRE) is a natural, nonreducing disaccharide synthesized by lower organisms. TRE exhibits an extraordinary ability to protect cells against different kinds of stresses through activation of autophagy. However, the effect of TRE on the heart during stress has never been tested. OBJECTIVES:This study evaluated the effects of TRE administration in a mouse model of chronic ischemic remodeling. METHODS:Wild-type (WT) or beclin1+/- mice were subjected to permanent ligation of the left anterior descending artery (LAD) and then treated with either placebo or trehalose (1 mg/g/day intraperitoneally for 48 h, then 2% in the drinking water). After 4 weeks, echocardiographic, hemodynamic, gravimetric, histological, and biochemical analyses were conducted. RESULTS:TRE reduced left ventricular (LV) dilation and increased ventricular function in mice with LAD ligation compared with placebo. Sucrose, another nonreducing disaccharide, did not exert protective effects during post-infarction LV remodeling. Trehalose administration to mice overexpressing GFP-tagged LC3 significantly increased the number of GFP-LC3 dots, both in the presence and absence of chloroquine administration. TRE also increased cardiac LC3-II levels after 4 weeks following myocardial infarction (MI), indicating that it induced autophagy in the heart in vivo. To evaluate whether TRE exerted beneficial effects through activation of autophagy, trehalose was administered to beclin 1+/- mice. The improvement of LV function, lung congestion, cardiac remodeling, apoptosis, and fibrosis following TRE treatment observed in WT mice were all significantly blunted in beclin 1+/- mice. CONCLUSIONS:TRE reduced MI-induced cardiac remodeling and dysfunction through activation of autophagy.
Project description:PF-1355 is an oral myeloperoxidase (MPO) inhibitor that successfully decreased elevated MPO activity in mouse myocardial infarction models. Short duration PF-1355 treatment for 7 days decreased the number of inflammatory cells and attenuated left ventricular dilation. Cardiac function and remodeling improved when treatment was increased to 21 days. Better therapeutic effect was further achieved with early compared with delayed treatment initiation (1 h vs. 24 h after infarction). In conclusion, PF-1355 treatment protected a mouse heart from acute and chronic effects of MI, and this study paves the way for future translational studies investigating this class of drugs in cardiovascular diseases.
Project description:Myocardial fibrosis is a major determinant of clinical outcomes in heart failure (HF) patients. It is characterized by the emergence of myofibroblasts and early activation of pro-fibrotic signaling pathways before adverse ventricular remodeling and progression of HF. Boron has been reported in recent years to augment the innate immune system and cell proliferation, which play an important role in the repair and regeneration of the injured tissue. Currently, the effect of boron on cardiac contractility and remodeling is unknown. In this study, we investigated, for the first time, the effect of boron supplementation on cardiac function, myocardial fibrosis, apoptosis and regeneration in a rat model myocardial infarction (MI)-induced HF. MI was induced in animals and borax, a sodium salt of boron, was administered for 7 days, p.o., 21 days post-injury at a dose level of 4 mg/kg body weight. Transthoracic echocardiographic analysis showed a significant improvement in systolic and diastolic functions with boron treatment compared to saline control. In addition, boron administration showed a marked reduction in myocardial fibrosis and apoptosis in the injured hearts, highlighting a protective effect of boron in the ischemic heart. Interestingly, we observed a tenfold increase of nuclei in thin myocardial sections stained positive for the cell cycle marker Ki67 in the MI boron-treated rats compared to saline, indicative of increased cardiomyocyte cell cycle activity in MI hearts, highlighting its potential role in regeneration post-injury. We similarly observed increased Ki67 and BrdU staining in cultured fresh neonatal rat ventricular cardiomyocytes. Collectively, the results show that boron positively impacted MI-induced HF and attenuated cardiac fibrosis and apoptosis, two prominent features of HF. Importantly, boron has the potential to induce cardiomyocyte cell cycle entry and potentially cardiac tissue regeneration after injury. Boron might be beneficial as a supplement in MI and may be a good candidate substance for anti-fibrosis approach.