Project description:The quantification of spreading heterogeneity in the COVID-19 epidemic is crucial as it affects the choice of efficient mitigating strategies irrespective of whether its origin is biological or social. We present a method to deduce temporal and individual variations in the basic reproduction number directly from epidemic trajectories at a community level. Using epidemic data from the 98 districts in Denmark we estimate an overdispersion factor k for COVID-19 to be about 0.11 (95% confidence interval 0.08-0.18), implying that 10 % of the infected cause between 70 % and 87 % of all infections.
Project description:Superspreaders, infected individuals who result in an outsized number of secondary cases, are believed to underlie a significant fraction of total SARS-CoV-2 transmission. Here, we combine empirical observations of SARS-CoV and SARS-CoV-2 transmission and extreme value statistics to show that the distribution of secondary cases is consistent with being fat-tailed, implying that large superspreading events are extremal, yet probable, occurrences. We integrate these results with interaction-based network models of disease transmission and show that superspreading, when it is fat-tailed, leads to pronounced transmission by increasing dispersion. Our findings indicate that large superspreading events should be the targets of interventions that minimize tail exposure.
Project description:A number of epidemics, including the SARS-CoV-1 epidemic of 2002-2004, have been known to exhibit superspreading, in which a small fraction of infected individuals is responsible for the majority of new infections. The existence of superspreading implies a fat-tailed distribution of infectiousness (new secondary infections caused per day) among different individuals. Here, we present a simple method to estimate the variation in infectiousness by examining the variation in early-time growth rates of new cases among different subpopulations. We use this method to estimate the mean and variance in the infectiousness, β, for SARS-CoV-2 transmission during the early stages of the pandemic within the United States. We find that σβ/μβ ≳ 3.2, where μβ is the mean infectiousness and σβ its standard deviation, which implies pervasive superspreading. This result allows us to estimate that in the early stages of the pandemic in the USA, over 81% of new cases were a result of the top 10% of most infectious individuals.
Project description:Epidemics are regularly associated with reports of superspreading: single individuals infecting many others. How do we determine if such events are due to people inherently being biological superspreaders or simply due to random chance? We present an analytically solvable model for airborne diseases which reveal the spreading statistics of epidemics in socio-spatial heterogeneous spaces and provide a baseline to which data may be compared. In contrast to classical SIR models, we explicitly model social events where airborne pathogen transmission allows a single individual to infect many simultaneously, a key feature that generates distinctive output statistics. We find that diseases that have a short duration of high infectiousness can give extreme statistics such as 20% infecting more than 80%, depending on the socio-spatial heterogeneity. Quantifying this by a distribution over sizes of social gatherings, tracking data of social proximity for university students suggest that this can be a approximated by a power law. Finally, we study mitigation efforts applied to our model. We find that the effect of banning large gatherings works equally well for diseases with any duration of infectiousness, but depends strongly on socio-spatial heterogeneity.
Project description:Superspreading and variants of concern (VOC) of the human pathogen severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are the main catalyzers of the coronavirus disease 2019 (COVID-19) pandemic. However, measuring their individual impact is challenging. By examining the largest database of SARS-CoV-2 genomes The Global Initiative on Sharing Avian Influenza Data [GISAID; n >1.2 million high-quality (HQ) sequences], we present evidence suggesting that superspreading has had a key role in the epidemiological predominance of VOC. There are clear signatures in the database compatible with large superspreading events (SSEs) coinciding chronologically with the worst epidemiological scenarios triggered by VOC. The data suggest that, without the randomness effect of the genetic drift facilitated by superspreading, new VOC of SARS-CoV-2 would have had more limited chance of success.
Project description:Testing is recommended for all close contacts of confirmed COVID-19 patients. However, existing pooled testing methods are oblivious to the circumstances of contagion provided by contact tracing. Here, we build upon a well-known semi-adaptive pooled testing method, Dorfman's method with imperfect tests, and derive a simple pooled testing method based on dynamic programming that is specifically designed to use information provided by contact tracing. Experiments using a variety of reproduction numbers and dispersion levels, including those estimated in the context of the COVID-19 pandemic, show that the pools found using our method result in a significantly lower number of tests than those found using Dorfman's method. Our method provides the greatest competitive advantage when the number of contacts of an infected individual is small, or the distribution of secondary infections is highly overdispersed. Moreover, it maintains this competitive advantage under imperfect contact tracing and significant levels of dilution.
Project description:While significant insights have been gained concerning COVID-19, superspreading of coronaviruses remains a mystery. The vast majority of cases have been linked to a relatively small portion of infected individuals. Yet, the genetic sequence of the virus, severity of disease, and underlying host parameters, such as age, sex, and health conditions, are not clearly driving the superspreading phenomenon. In this commentary we discuss what is known and what is not known about coronavirus superspreader transmission and explore whether characteristics of the virion, the donor, or the environment contribute to this phenomenon.
Project description:This paper presents a study of early epidemiological assessment of COVID-19 transmission dynamics in Indonesia. The aim is to quantify heterogeneity in the numbers of secondary infections. To this end, we estimate the basic reproduction number [Formula: see text] and the overdispersion parameter [Formula: see text] at two regions in Indonesia: Jakarta-Depok and Batam. The method to estimate [Formula: see text] is based on a sequential Bayesian method, while the parameter [Formula: see text] is estimated by fitting the secondary case data with a negative binomial distribution. Based on the first 1288 confirmed cases collected from both regions, we find a high degree of individual-level variation in the transmission. The basic reproduction number [Formula: see text] is estimated at 6.79 and 2.47, while the overdispersion parameter [Formula: see text] of a negative-binomial distribution is estimated at 0.06 and 0.2 for Jakarta-Depok and Batam, respectively. This suggests that superspreading events played a key role in the early stage of the outbreak, i.e., a small number of infected individuals are responsible for large numbers of COVID-19 transmission. This finding can be used to determine effective public measures, such as rapid isolation and identification, which are critical since delay of diagnosis is the most common cause of superspreading events.
Project description:The number of secondary cases, i.e. the number of new infections generated by an infectious individual, is an important parameter for the control of infectious diseases. When individual variation in disease transmission is present, like for COVID-19, the distribution of the number of secondary cases is skewed and often modeled using a negative binomial distribution. However, this may not always be the best distribution to describe the underlying transmission process. We propose the use of three other offspring distributions to quantify heterogeneity in transmission, and we assess the possible bias in estimates of the mean and variance of this distribution when the data generating distribution is different from the one used for inference. We also analyze COVID-19 data from Hong Kong, India, and Rwanda, and quantify the proportion of cases responsible for 80% of transmission, [Formula: see text], while acknowledging the variation arising from the assumed offspring distribution. In a simulation study, we find that variance estimates may be biased when there is a substantial amount of heterogeneity, and that selection of the most accurate distribution from a set of distributions is important. In addition we find that the number of secondary cases for two of the three COVID-19 datasets is better described by a Poisson-lognormal distribution.