Intraventricular Medium B Treatment Benefits an Ischemic Stroke Rodent Model via Enhancement of Neurogenesis and Anti-apoptosis.
Ontology highlight
ABSTRACT: Enhancement of endogenous neurogenesis after ischemic stroke may improve functional recovery. We previously demonstrated that medium B, which is a combination with epidermal growth factor (EGF) and fibronectin, can promote neural stem/progenitor cell (NSPC) proliferation and migration. Here, we showed that medium B promoted proliferation and migration of cultured NSPCs onto various 3-dimentional structures. When rat cortical neurons with oxygen glucose deprivation (OGD) were co-cultured with NSPCs, medium B treatment increased neuronal viability and reduced cell apoptosis. In a rat model with transient middle cerebral artery occlusion (MCAO), post-insult intraventricular medium B treatment enhanced proliferation, migration, and neuronal differentiation of NSPCs and diminished cell apoptosis in the infarct brain. In cultured post-OGD neuronal cells and the infarct brain from MCAO rats, medium B treatment increased protein levels of Bcl-xL, Bcl-2, phospho-Akt, phospho-GSK-3?, and ?-catenin and decreased the cleaved caspase-3 level, which may be associated with the effects of anti-apoptosis. Notably, intraventricular medium B treatment increased neuronal density, improved motor function and reduced infarct size in MCAO rats. In summary, medium B treatment results in less neuronal death and better functional outcome in both cellular and rodent models of ischemic stroke, probably via promotion of neurogenesis and reduction of apoptosis.
SUBMITTER: Chen YA
PROVIDER: S-EPMC7171187 | biostudies-literature | 2020 Apr
REPOSITORIES: biostudies-literature
ACCESS DATA