Unknown

Dataset Information

0

In Vitro Generation of Novel Functionalized Biomaterials for Use in Oral and Dental Regenerative Medicine Applications. Running Title: Fibrin-Agarose Functionalized Scaffolds.


ABSTRACT: Recent advances in tissue engineering offer innovative clinical alternatives in dentistry and regenerative medicine. Tissue engineering combines human cells with compatible biomaterials to induce tissue regeneration. Shortening the fabrication time of biomaterials used in tissue engineering will contribute to treatment improvement, and biomaterial functionalization can be exploited to enhance scaffold properties. In this work, we have tested an alternative biofabrication method by directly including human oral mucosa tissue explants within the biomaterial for the generation of human bioengineered mouth and dental tissues for use in tissue engineering. To achieve this, acellular fibrin-agarose scaffolds (AFAS), non-functionalized fibrin-agarose oral mucosa stroma substitutes (n-FAOM), and novel functionalized fibrin-agarose oral mucosa stroma substitutes (F-FAOM) were developed and analyzed after 1, 2, and 3 weeks of in vitro development to determine extracellular matrix components as compared to native oral mucosa controls by using histochemistry and immunohistochemistry. Results demonstrate that functionalization speeds up the biofabrication method and contributes to improve the biomimetic characteristics of the scaffold in terms of extracellular matrix components and reduce the time required for in vitro tissue development.

SUBMITTER: Blanco-Elices C 

PROVIDER: S-EPMC7178710 | biostudies-literature | 2020 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

In Vitro Generation of Novel Functionalized Biomaterials for Use in Oral and Dental Regenerative Medicine Applications. Running Title: Fibrin-Agarose Functionalized Scaffolds.

Blanco-Elices Cristina C   España-Guerrero Enrique E   Mateu-Sanz Miguel M   Sánchez-Porras David D   García-García Óscar Darío ÓD   Sánchez-Quevedo María Del Carmen MDC   Fernández-Valadés Ricardo R   Alaminos Miguel M   Martín-Piedra Miguel Ángel MÁ   Garzón Ingrid I  

Materials (Basel, Switzerland) 20200404 7


Recent advances in tissue engineering offer innovative clinical alternatives in dentistry and regenerative medicine. Tissue engineering combines human cells with compatible biomaterials to induce tissue regeneration. Shortening the fabrication time of biomaterials used in tissue engineering will contribute to treatment improvement, and biomaterial functionalization can be exploited to enhance scaffold properties. In this work, we have tested an alternative biofabrication method by directly inclu  ...[more]

Similar Datasets

| S-EPMC5452316 | biostudies-other
| S-EPMC3317746 | biostudies-literature
| S-EPMC4254531 | biostudies-literature
| S-EPMC7182956 | biostudies-literature
| S-EPMC8196399 | biostudies-literature
| S-EPMC5824368 | biostudies-literature
| S-EPMC7022386 | biostudies-literature
| S-EPMC9016860 | biostudies-literature
| S-EPMC7919481 | biostudies-literature
| S-EPMC6594136 | biostudies-literature