Unknown

Dataset Information

0

Observation of CO Detection Using Aluminum-Doped ZnO Nanorods on Microcantilever.


ABSTRACT: An oscillating piezoresistive microcantilever (MC) coated with an aluminum (Al)-doped zinc oxide (ZnO) nanorods was used to detect carbon monoxide (CO) in air at room temperature. Al-doped ZnO nanorods were grown on the MC surface using the hydrothermal method, and a response to CO gas was observed by measuring a resonant frequency shift of vibrated MC. CO gas response showed a significant increase in resonant frequency, where sensitivity in the order of picogram amounts was obtained. An increase in resonant frequency was also observed with increasing gas flow rate, which was simultaneously followed by a decrease in relative humidity, indicating that the molecular interface between ZnO and H2O plays a key role in CO absorption. The detection of other gases of carbon compounds such as CO2 and CH4 was also performed; the sensitivity of CO was found to be higher than those gases. The results demonstrate the reversibility and reproducibility of the proposed technique, opening up future developments of highly sensitive CO-gas detectors with a fast response and room temperature operation.

SUBMITTER: Nuryadi R 

PROVIDER: S-EPMC7181168 | biostudies-literature | 2020 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Observation of CO Detection Using Aluminum-Doped ZnO Nanorods on Microcantilever.

Nuryadi Ratno R   Aprilia Lia L   Hosoda Makoto M   Barique Mohamad Abdul MA   Udhiarto Arief A   Hartanto Djoko D   Setiawan Muhammad Budi MB   Neo Yoichiro Y   Mimura Hidenori H  

Sensors (Basel, Switzerland) 20200403 7


An oscillating piezoresistive microcantilever (MC) coated with an aluminum (Al)-doped zinc oxide (ZnO) nanorods was used to detect carbon monoxide (CO) in air at room temperature. Al-doped ZnO nanorods were grown on the MC surface using the hydrothermal method, and a response to CO gas was observed by measuring a resonant frequency shift of vibrated MC. CO gas response showed a significant increase in resonant frequency, where sensitivity in the order of picogram amounts was obtained. An increas  ...[more]

Similar Datasets

| S-EPMC9419505 | biostudies-literature
| S-EPMC9417916 | biostudies-literature
| S-EPMC5082445 | biostudies-literature
| S-EPMC5429288 | biostudies-literature
| S-EPMC4796899 | biostudies-other
| S-EPMC9855673 | biostudies-literature
| S-EPMC6408384 | biostudies-literature
| S-EPMC7599740 | biostudies-literature
| S-EPMC7493217 | biostudies-literature
| S-EPMC9417535 | biostudies-literature