Project description:Studies on the clinical significance of Nucleophosmin (NPM1) mutations in pediatric AML in a large cohort are lacking. Moreover, the prognosis of patients with co-occurring NPM1 and FLT3/ITD mutations is controversial. Here, we analyzed the impact of NPM1 mutations on prognoses of 869 pediatric AML patients from the TAGET dataset. The frequency of NPM1 mutations was 7.6%. NPM1 mutations were significantly associated with older age (P < 0.001), normal cytogenetics (P < 0.001), FLT3/ITD mutations (P < 0.001), and high complete remission induction rates (P < 0.05). Overall, NPM1-mutated patients had a significantly better 5-year EFS (P = 0.001) and OS (P = 0.016) compared to NPM1 wild-type patients, and this favorable impact was maintained even in the presence of FLT3/ITD mutations. Stem cell transplantation had no significant effect on the survival of patients with both NPM1 and FLT3/ITD mutations. Multivariate analysis revealed that NPM1 mutations were independent predictors of better outcome in terms of EFS (P = 0.004) and OS (P = 0.012). Our findings showed that NPM1 mutations confer an independent favorable prognostic impact in pediatric AML despite of FLT3/ITD mutations. In addition, pediatric AML patients with both NPM1 and FLT3/ITD mutations appear to have favorable prognoses and may not need hematopoietic stem cell transplantations.
Project description:Internal tandem duplication of the fms-like tyrosine kinase-3 gene (FLT3-ITD) and nucleophosmin-1 (NPM1) mutations have prognostic importance in acute myeloid leukemia (AML) patients with intermediate-risk karyotype at diagnosis, but less is known about their utility to predict outcomes at relapse. We retrospectively analysed outcomes of 70 patients with relapsed, intermediate-risk karyotype AML who received a uniform reinduction regimen, with respect to FLT3-ITD and NPM1 mutation status and first complete remission (CR1) duration. CR1 duration, but not molecular status, was significantly correlated with CR2 rate. On univariate analysis, patients with mutated FLT3-ITD (FLT3+) had significantly worse overall survival (OS) compared with those with neither an NPM1 nor FLT3-ITD mutation (NPM1-/FLT3-). On multivariate analysis, shorter CR1 duration was significantly correlated with inferior OS at relapse (P<0.0001), while FLT3 and NPM1 mutation status and age were not significantly correlated with OS. Patients who subsequently underwent allogeneic stem cell transplant (alloSCT) had a superior OS regardless of CR1 duration, but outcomes were better in patients with CR1 duration>12 months. In intermediate-risk karyotype AML patients receiving reinduction, CR1 duration remains the most important predictor of OS at relapse; FLT3-ITD and NPM1 status are not independent predictors of survival.
Project description:Acute Myeloid Leukemia (AML) develops due to the acquisition of mutations from multiple functional classes. Here, we demonstrate that activating mutations in the granulocyte colony stimulating factor receptor (CSF3R), cooperate with loss of function mutations in the transcription factor CEBPA to promote acute leukemia development. The interaction between these distinct classes of mutations occurs at the level of myeloid lineage enhancers where mutant CEBPA prevents activation of a subset of differentiation associated enhancers. To confirm this enhancer-dependent mechanism, we demonstrate that CEBPA mutations must occur as the initial event in AML initiation. This improved mechanistic understanding will facilitate therapeutic development targeting the intersection of oncogene cooperativity.
Project description:Acute myeloid leukemia (AML) is a biologically complex and molecularly and clinically heterogeneous disease, and its incidence increases with age. Cytogenetics and mutation testing remain important prognostic tools for treatment after induction therapy. The post-induction treatment is dependent on risk stratification. Despite rapid advances in determination of gene mutations involved in the pathophysiology and biology of AML, and the rapid development of new drugs, treatment improvements changed slowly over the past 30 years, with the majority of patients eventually experiencing relapse and dying of their disease. Allogenic hematopoietic stem cell transplantation remains the best chance of cure for patients with intermediate- or high-risk disease. This review gives an overview about advances in prognostic markers and novel treatment options for AML, focusing on new prognostic and probably therapeutic mutations, and novel drug therapies such as tyrosine kinase inhibitors.
Project description:Activating mutations in the gene encoding for receptor of colony stimulating factor 3 (CSF3R) are drivers of pathogenesis in chronic neutrophilic leukemia (CNL) and atypical chronic myeloid leukemia (aCML). We describe a patient with newly diagnosed B-cell acute lymphoblastic leukemia (ALL) and three unique CSF3R truncating mutations which are predicted to be activating. After a slow early response to induction chemotherapy, dasatinib was added based on data from in vitro experiments demonstrating that dasatinib effectively targets key downstream kinases in CSF3R-mutated CNL/aCML. The patient subsequently achieved complete remission with minimal residual disease negativity that has been durable.
Project description:BACKGROUND: DNA methyltransferase 3A (DNMT3A) mutation was recently introduced as a prognostic indicator in normal karyotype (NK) AML and we evaluated the incidence and prognostic impact of DNMT3A mutations in Korean NK AML patients. METHODS: Total 67 NK AML patients diagnosed during the recent 10 years were enrolled. DNMT3A mutations were analyzed by direct sequencing and categorized into nonsynonymous variations (NSV), deleterious mutations (DM), and R882 mutation based on in silico analysis results. Clinical features and prognosis were compared with respect to DNMT3A mutation status. RESULTS: Three novel (I158M, K219V, and E177V) and two known (R736H and R882H) NSVs were identified and the latter three were predicted as DMs. DNMT3A NSVs, DMs, and R882 mutation were identified in 14.9%-17.9%, 10.3%-10.4%, and 7.5% of patients, respectively. DNMT3A mutations were frequently detected in FLT3 ITD mutated patients (P=0.054, 0.071, and 0.071 in NSV, DMs, and R882 mutation, resp.) but did not affect clinical features and prognosis significantly. CONCLUSIONS: Incidences of DNMT3A NSVs, DMs, and R882 mutation are 14.9%-17.9%, 10.3%-10.4%, and 7.5%, respectively, in Korean NK AML patients. DNMT3A mutations are associated with FLT3 ITD mutations but do not affect clinical outcome significantly in Korean NK AML patients.
Project description:Isocitrate dehydrogenase 1 (IDH1) gene aberrations have recently been reported in acute myeloid leukemia (AML). To evaluate the prognostic significance of IDH1 mutations in AML, we performed a meta-analysis. Fifteen studies covering a total of 8121 subjects were included in this analysis. The frequency of IDH1 R132 mutations were 4.4-9.3% for AML patients and 10.9-16.0% for cytogenetically normal (CN)-AML patients. The IDH1 mutations were associated with NPM1 mutations in 6 studies and normal cytogenetics in 5 studies. AML patients with IDH1 mutations had inferior overall survival compared to patients without the mutations (hazard ratio 1.17, 95% CI: 1.02-1.36). Additionally, in CN-AML patients, IDH1 mutations were associated with a lower complete remission rate (risk ratio 1.30, 95% CI: 1.04-1.63). Although the available literature is limited to observational studies, these results may justify the risk-adapted therapeutic strategies for AML according to the IDH1 status.
Project description:Chromosomal region maintenance 1 (CRM1) is a nuclear export receptor recognizing proteins bearing a leucine-rich nuclear export signal. CRM1 is involved in nuclear export of tumor suppressors such as p53. We investigated the prognostic significance of CRM1 in acute myeloid leukemia (AML) and effects of a novel small-molecule selective inhibitor of CRM1. CRM1 protein expression was determined in 511 newly diagnosed AML patients and was correlated with mouse double minute 2 (MDM2) and p53 levels. High CRM1 expression was associated with short survival of patients and remained an adverse prognostic factor in multivariate analysis. CRM1 inhibitor KPT-185 induced mainly full-length p53 and apoptosis in a p53-dependent manner, whereas inhibition of proliferation was p53 independent. Patient samples with p53 mutations showed low sensitivity to KPT-185. Nuclear retention of p53 induced by CRM1 inhibition synergized with increased levels of p53 induced by MDM2 inhibition in apoptosis induction. KPT-185 and Nutlin-3a, alone and in combination, induced synergistic apoptosis in patient-derived CD34(+)/CD38(-) AML, but not in normal progenitor cells. Data suggest that CRM1 exerts an antiapoptotic function and is highly prognostic in AML. We propose a novel combinatorial approach for the therapy of AML, aimed at maximal activation of p53-mediated apoptosis by concomitant MDM2 and CRM1 inhibition.
Project description:Long noncoding RNAs (lncRNAs) are transcripts longer than 200 nucleotides, located within the intergenic stretches or overlapping antisense transcripts of protein coding genes. LncRNAs are involved in numerous biological roles including imprinting, epigenetic regulation, apoptosis, and cell cycle. To determine whether lncRNAs are associated with clinical features and recurrent mutations in older patients (aged ≥60 y) with cytogenetically normal (CN) acute myeloid leukemia (AML), we evaluated lncRNA expression in 148 untreated older CN-AML cases using a custom microarray platform. An independent set of 71 untreated older patients with CN-AML was used to validate the outcome scores using RNA sequencing. Distinctive lncRNA profiles were found associated with selected mutations, such as internal tandem duplications in the FLT3 gene (FLT3-ITD) and mutations in the NPM1, CEBPA, IDH2, ASXL1, and RUNX1 genes. Using the lncRNAs most associated with event-free survival in a training cohort of 148 older patients with CN-AML, we derived a lncRNA score composed of 48 lncRNAs. Patients with an unfavorable compared with favorable lncRNA score had a lower complete response (CR) rate [P < 0.001, odds ratio = 0.14, 54% vs. 89%], shorter disease-free survival (DFS) [P < 0.001, hazard ratio (HR) = 2.88] and overall survival (OS) (P < 0.001, HR = 2.95). The validation set analyses confirmed these results (CR, P = 0.03; DFS, P = 0.009; OS, P = 0.009). Multivariable analyses for CR, DFS, and OS identified the lncRNA score as an independent marker for outcome. In conclusion, lncRNA expression in AML is closely associated with recurrent mutations. A small subset of lncRNAs is correlated strongly with treatment response and survival.