Project description:Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and usually fatal form of interstitial lung disease (ILD). The precise molecular mechanisms of IPF remain poorly understood. However, analyses of mice receiving bleomycin (BLM) as a model of IPF established the importance of preceding inflammation for the formation of fibrosis. Periostin is a recently characterized matricellular protein involved in modulating cell functions. We recently found that periostin is highly expressed in the lung tissue of patients with IPF, suggesting that it may play a role in the process of pulmonary fibrosis. To explore this possibility, we administered BLM to periostin-deficient mice, and they subsequently showed a reduction of pulmonary fibrosis. We next determined whether this result was caused by a decrease in the preceding recruitment of neutrophils and macrophages in the lungs because of the lower production of chemokines and proinflammatory cytokines. We performed an in vitro analysis of chemokine production in lung fibroblasts, which indicated that periostin-deficient fibroblasts produced few or no chemokines in response to TNF-α compared with control samples, at least partly explaining the lack of inflammatory response and, therefore, fibrosis after BLM administration to periostin-deficient mice. In addition, we confirmed that periostin is highly expressed in the lung tissue of chemotherapeutic-agent-induced ILD as well as of patients with IPF. Taking these results together, we conclude that periostin plays a unique role as an inducer of chemokines to recruit neutrophils and macrophages important in the process of pulmonary fibrosis in BLM-administered model mice. Our results suggest a therapeutic potential for periostin in IPF and drug-induced ILD.
Project description:The pathogenesis of idiopathic pulmonary fibrosis is multifactorial and characterized by progressive fibrosis and excessive accumulation of extracellular matrix in the interstitium of the lung, and driven by an imbalance between anti-fibrotic and pro-fibrotic factors leading to collagen deposition. In the present study we wanted to identify proteins involved in these processes, and performed high-resolution proteomic profiling of bronchoalveolar lavage (BAL) from IPF patients and controls. The proteomic analysis of BAL demonstrated that the complement system was highly differentially regulated in IPF patients as compared with controls.
Project description:Pulmonary fibrosis is a chronic progressive form of interstitial lung disease, characterized by the histopathological pattern of usual interstitial pneumonia. Apart from aberrant alterations of protein-coding genes, dysregulation of non-coding RNAs, including microRNAs, long non-coding RNAs, and circular RNAs (circRNAs), is crucial to the initiation and progression of pulmonary fibrosis. CircRNAs are single-stranded RNAs that form covalently closed loops without 5' caps and 3' tails. Different from canonical splicing of mRNA, they are produced from the back-splicing of precursor mRNAs and have unique biological functions, as well as potential biomedical implications. They function as important gene regulators through multiple actions, including sponging microRNAs and proteins, regulating transcription, and splicing, as well as protein-coding and translation in a cap-independent manner. This review comprehensively summarizes the alteration and functional role of circRNAs in pulmonary fibrosis, with a focus on the involvement of the circRNA in the context of cell-specific pathophysiology. In addition, we discuss the diagnostic and therapeutic potential of targeting circRNA and their regulatory pathway mediators, which may facilitate the translation of recent advances from bench to bedside in the future.
Project description:Found in inflammatory zone (FIZZ) 2, also known as resistin-like molecule (RELM)-?, belongs to a novel cysteine-rich secreted protein family named FIZZ/RELM. Its function is unclear, but a closely related family member, FIZZ1, has profibrotic activities. The human ortholog of rodent FIZZ1 has not been identified, but human FIZZ2 has significant sequence homology to both rodent FIZZ2 (59%) and FIZZ1 (50%). Given the greater homology to rodent FIZZ2, analyzing the role of FIZZ2 in a rodent model of bleomycin-induced pulmonary fibrosis would be of greater potential relevance to human fibrotic lung disease. The results showed that FIZZ2 was highly induced in lungs of rodents with bleomycin-induced pulmonary fibrosis and of human patients with idiopathic pulmonary fibrosis. FIZZ2 expression was induced in rodent and human lung epithelial cells by Th2 cytokines, which was mediated via STAT6 signaling. The FIZZ2 induction in murine lungs was found to be essential for pulmonary fibrosis, as FIZZ2 deficiency significantly suppressed pulmonary fibrosis and associated enhanced extracellular matrix and cytokine gene expression. In vitro analysis indicated that FIZZ2 could stimulate type I collagen and ?-smooth muscle actin expression in lung fibroblasts. Furthermore, FIZZ2 was shown to have chemoattractant activity for bone marrow (BM) cells, especially BM-derived CD11c(+) dendritic cells. Notably, lung recruitment of BM-derived cells was impaired in FIZZ2 knockout mice. These findings suggest that FIZZ2 is a Th2-associated multifunctional mediator with potentially important roles in the pathogenesis of fibrotic lung diseases.
Project description:In this study, we explored the regulation and the role of up-regulated microRNAs in idiopathic pulmonary fibrosis (IPF), a progressive interstitial lung disease of unknown origin. We analyzed the expression of microRNAs in IPF lungs and identified 43 significantly up-regulated microRNAs. Twenty-four of the 43 increased microRNAs were localized to the chromosome 14q32 microRNA cluster. We validated the increased expression of miR-154, miR-134, miR-299-5p, miR-410, miR-382, miR-409-3p, miR-487b, miR-31, and miR-127 by quantitative RT-PCR and determined that they were similarly expressed in embryonic lungs. We did not find evidence for differential methylation in this region, but analysis of transcription factor binding sites identified multiple SMAD3-binding elements in the 14q32 microRNA cluster. TGF-?1 stimulation of normal human lung fibroblasts (NHLF) caused up-regulation of microRNAs on chr14q32 that were also increased in IPF lungs. Chromatin immunoprecipitation confirmed binding of SMAD3 to the putative promoter of miR-154. Mir-154 was increased in IPF fibroblasts, and transfection of NHLF with miR-154 caused significant increases in cell proliferation and migration. The increase in proliferation induced by TGF-? was not observed when NHLF or IPF fibroblasts were transfected with a mir-154 inhibitor. Transfection with miR-154 caused activation of the WNT pathway in NHLF. ICG-001 and XAV939, inhibitors of the WNT/?-catenin pathway, reduced the proliferative effect of miR-154. The potential role of miR-154, one of multiple chr14q32 microRNA cluster members up-regulated in IPF and a regulator of fibroblast migration and proliferation, should be further explored in IPF.
Project description:Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease of unknown etiology. Immune disorders play an important role in IPF pathogenesis. Here, we show that Th9 cells differentiate and activate in the lung tissue of patients with IPF and bleomycin (BLM)-induced lung fibrosis mice. Moreover, we found that Th9 cells promote pulmonary fibrosis in two ways. On the one hand, Th9 cells promote fibroblast differentiation, activation, and collagen secretion by secreting IL-9. On the other hand, they promote differentiation of Th0 cells into Th2 cells by secreting IL-4. Th9 cells and Th2 cells can promote each other, accelerating the Th1/Th2 imbalance and eventually forming a positive feedback of pulmonary fibrosis. In addition, we found that neutralizing IL-9 in both preventive and therapeutic settings ameliorates bleomycin-induced pulmonary fibrosis. Furthermore, we identified several critical signaling pathways involved in the effect of neutralizing IL-9 on pulmonary fibrosis by proteomics study. From an immunological perspective, we elucidated the novel role and underlying mechanism of Th9 cells in pulmonary fibrosis. Our study suggested that Th9-based immunotherapy may be employed as a treatment strategy for IPF.
Project description:RationaleIdiopathic pulmonary fibrosis (IPF) is a deadly progressive disease with few treatment options. Transglutaminase 2 (TG2) is a multifunctional protein, but its function in pulmonary fibrosis is unknown.ObjectivesTo determine the role of TG2 in pulmonary fibrosis.MethodsThe fibrotic response to bleomycin was compared between wild-type and TG2 knockout mice. Transglutaminase and transglutaminase-catalyzed isopeptide bond expression was examined in formalin-fixed human lung biopsy sections by immunohistochemistry from patients with IPF. In addition, primary human lung fibroblasts were used to study TG2 function in vitro.Measurements and main resultsTG2 knockout mice developed significantly reduced fibrosis compared with wild-type mice as determined by hydroxyproline content and histologic fibrosis score (P < 0.05). TG2 expression and activity are increased in lung biopsy sections in humans with IPF compared with normal control subjects. In vitro overexpression of TG2 led to increased fibronectin deposition, whereas transglutaminase knockdown led to defects in contraction and adhesion. The profibrotic cytokine transforming growth factor-β causes an increase in membrane-localized TG2, increasing its enzymatic activity.ConclusionsTG2 is involved in pulmonary fibrosis in a mouse model and in human disease and is important in normal fibroblast function. With continued research on TG2, it may offer a new therapeutic target.
Project description:Interleukins, a group of cytokines participating in inflammation and immune response, are proved to be involved in the formation and development of pulmonary fibrosis. In this article, we reviewed the relationship between interleukins and pulmonary fibrosis from the clinical, animal, as well as cellular levels, and discussed the underlying mechanisms in vivo and in vitro. Despite the effects of interleukin-targeted treatment on experimental pulmonary fibrosis, clinical applications are lacking and unsatisfactory. We conclude that intervening in one type of interleukins with similar functions in IPF may not be enough to stop the development of fibrosis as it involves a complex network of regulation mechanisms. Intervening interleukins combined with other existing therapy or targeting interleukins affecting multiple cells/with different functions at the same time may be one of the future directions. Furthermore, the intervention time is critical as some interleukins play different roles at different stages. Further elucidation on these aspects would provide new perspectives on both the pathogenesis mechanism, as well as the therapeutic strategy and drug development.