Unknown

Dataset Information

0

Cell viscoelasticity is linked to fluctuations in cell biomass distributions.


ABSTRACT: The viscoelastic properties of mammalian cells can vary with biological state, such as during the epithelial-to-mesenchymal (EMT) transition in cancer, and therefore may serve as a useful physical biomarker. To characterize stiffness, conventional techniques use cell contact or invasive probes and as a result are low throughput, labor intensive, and limited by probe placement. Here, we show that measurements of biomass fluctuations in cells using quantitative phase imaging (QPI) provides a probe-free, contact-free method for quantifying changes in cell viscoelasticity. In particular, QPI measurements reveal a characteristic underdamped response of changes in cell biomass distributions versus time. The effective stiffness and viscosity values extracted from these oscillations in cell biomass distributions correlate with effective cell stiffness and viscosity measured by atomic force microscopy (AFM). This result is consistent for multiple cell lines with varying degrees of cytoskeleton disruption and during the EMT. Overall, our study demonstrates that QPI can reproducibly quantify cell viscoelasticity.

SUBMITTER: Nguyen TL 

PROVIDER: S-EPMC7198624 | biostudies-literature | 2020 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Cell viscoelasticity is linked to fluctuations in cell biomass distributions.

Nguyen Thang L TL   Polanco Edward R ER   Patananan Alexander N AN   Zangle Thomas A TA   Teitell Michael A MA  

Scientific reports 20200504 1


The viscoelastic properties of mammalian cells can vary with biological state, such as during the epithelial-to-mesenchymal (EMT) transition in cancer, and therefore may serve as a useful physical biomarker. To characterize stiffness, conventional techniques use cell contact or invasive probes and as a result are low throughput, labor intensive, and limited by probe placement. Here, we show that measurements of biomass fluctuations in cells using quantitative phase imaging (QPI) provides a probe  ...[more]