Project description:Mannose-binding lectin (MBL) and lectin complement pathway have become targets of increasing clinical interest. Many aspects of MBL have been recently explored, including the structural properties that allow it to distinguish self from non-self/altered-self structures. Experimental evidences have declared the additional 5'- and 3'-variants that in amalgamation with well-known secretor polymorphisms change MBL function and concentration. Moreover, the current review highlights the differential behavior of MBL on exposure with extra/intracellular pathogens and in autoimmune diseases, stressing the fact that "high MBL levels can increase diseases susceptibility," a paradox that needs justification. Attributable to these discrepancies, no absolute level of MBL deficiency could be defined so far and thus must be interpreted for specific diseases through case-control population-specific designs. Overall, it is evident that further research is needed about MBL and the lectin pathway of complement. Particularly, the transformative role of MBL over evolution is of interest and its role with regard to pathogenesis of different diseases and potential therapeutic targets within the respective pathways should be further explored. Apart from this, it is necessary to adopt an extensive locus-wide methodology to apprehend the clinical significance of MBL2 polymorphisms in a variety of infectious diseases by the future studies.
Project description:The gasdermins are a family of pore-forming proteins recently implicated in the immune response. One of these proteins, gasdermin D (GSDMD), has been identified as the executioner of pyroptosis, an inflammatory form of lytic cell death that is induced upon formation of caspase-1-activating inflammasomes. The related proteins GSDME and GSDMA have also been implicated in autoimmune diseases and certain cancers. Most gasdermin proteins are believed to have pore-forming capabilities. The best-studied member, GSDMD, controls the release of the proinflammatory cytokines IL-1ß and IL-18 and pyroptotic cell death. Because of its potential as a driver of inflammation in septic shock and autoimmune diseases, GSDMD represents an attractive drug target. In this review, we discuss the gasdermin proteins with particular emphasis on GSDMD and its mechanism of action and biological significance.
Project description:Epidermal growth factor receptor variant III (EGFRvIII) seems to constitute the perfect therapeutic target for glioblastoma (GB), as it is specifically present on up to 28-30% of GB cells. In case of other tumor types, expression and possible role of this oncogene still remain controversial. In spite of EGFRvIII mechanism of action being crucial for the design of small active anticancer molecules and immunotherapies, i.e., CAR-T technology, it is yet to be precisely defined. EGFRvIII is known to be resistant to degradation, but it is still unclear whether it heterodimerizes with EGF-activated wild-type EGFR (EGFRWT) or homodimerizes (including covalent homodimerization). Constitutive kinase activity of this mutated receptor is relatively low, and some researchers even claim that a nuclear, but not a membrane function, is crucial for its activity. Based on the analyses of recurrent tumors that are often lacking EGFRvIII expression despite its initial presence in corresponding primary foci, this oncogene is suggested to play a marginal role during later stages of carcinogenesis, while even in primary tumors EGFRvIII expression is detected only in a small percentage of tumor cells, undermining the rationality of EGFRvIII-targeting therapies. On the other hand, EGFRvIII-positive cells are resistant to apoptosis, more invasive, and characterized with enhanced proliferation rate. Moreover, expression of this oncogenic receptor was also postulated to be a marker of cancer stem cells. Opinions regarding the role that EGFRvIII plays in tumorigenesis and for tumor aggressiveness are clearly contradictory and, therefore, it is crucial not only to determine its mechanism of action, but also to unambiguously define its role at early and advanced cancer stages.
Project description:IPF is thought to be a consequence of repetitive micro-injury to ageing alveolar epithelium by factors including tobacco smoke, environmental exposures, microbial colonisation/infection, microaspiration, endoplasmic reticulum stress and oxidative stress, with resultant aberrant wound healing. Though partially effective antifibrotic therapies have focused attention away from older inflammation-based hypotheses for IPF pathogenesis, innate and adaptive immune cells and processes may play roles potentially in initiation and/or disease progression in IPF and/or in IPF acute exacerbations, based on multiple lines of evidence. Members of the Toll-like family of innate immune receptors have been implicated in IPF pathogenesis, including a potential modulatory role for the lung microbiome. A variety of chemokines are associated with the presence of IPF, and an imbalance of angiogenic chemokines has been linked to vascular remodelling in the disease. Subsets of circulating monocytes, including fibrocytes and segregated-nucleus-containing atypical monocytes (SatM), have been identified that may facilitate progression of fibrosis, and apoptosis-resistant pulmonary macrophages have been shown to demonstrate pro-fibrotic potential. Inflammatory cells that have been somewhat dismissed as irrelevant to IPF pathogenesis are being re-evaluated in light of new mechanistic data, such as activated neutrophils which release their chromatin in a process termed NETosis, which appears to mediate age-related murine lung fibrosis. A greater understanding is needed of the role of lymphoid aggregates, a histologic feature of IPF lungs found in close proximity to fibroblastic foci and highly suggestive of the presence of chronic immune responses in IPF, as are well-characterised activated circulating T lymphocytes and distinct autoantibodies that have been observed in IPF. There is a pressing need to discern whether or not the indisputably present immune dysregulation of IPF constitutes cause or effect in the ongoing search for more effective therapeutic strategies.
Project description:Previous research on pronoun resolution in German revealed that personal pronouns in German tend to refer to the subject or topic antecedents, however, these results are based on studies involving subject personal pronouns. We report a visual world eye-tracking study that investigated the impact of the word order and grammatical role parallelism on the online comprehension of pronouns in German-speaking adults. Word order of the antecedents and parallelism by the grammatical role of the anaphor was modified in the study. The results show that parallelism of the grammatical role had an early and strong effect on the processing of the pronoun, with subject anaphors being resolved to subject antecedents and object anaphors to object antecedents, regardless of the word order (information status) of the antecedents. Our results demonstrate that personal pronouns may not in general be associated with the subject or topic of a sentence but that their resolution is modulated by additional factors such as the grammatical role. Further studies are required to investigate whether parallelism also affects offline antecedent choices.
Project description:Alterations of the gut microbiota may cause dysregulated mucosal immune responses leading to the onset of inflammatory bowel diseases (IBD) in genetically susceptible hosts. Restoring immune homeostasis through the normalization of the gut microbiota is now considered a valuable therapeutic approach to treat IBD patients. The customization of microbe-targeted therapies, including antibiotics, prebiotics, live biotherapeutics and faecal microbiota transplantation, is therefore considered to support current therapies in IBD management. In this review, we will discuss recent advancements in the understanding of host-microbe interactions in IBD and the basis to promote homeostatic immune responses through microbe-targeted therapies. By considering gut microbiota dysbiosis as a key feature for the establishment of chronic inflammatory events, in the near future it will be suitable to design new cost-effective, physiologic, and patient-oriented therapeutic strategies for the treatment of IBD that can be applied in a personalized manner.
Project description:NKX2-5 is a homeodomain-containing transcription factor implied in both heart and thyroid development. Numerous mutations in NKX2-5 have been reported in individuals with congenital heart disease (CHD), but recently a select few have been associated with thyroid dysgenesis, among which the p.A119S variation. We sequenced NKX2-5 in 303 sporadic CHD patients and 38 families with at least two individuals with CHD. The p.A119S variation was identified in two unrelated patients: one was found in the proband of a family with four affected individuals with CHD and the other in a sporadic CHD patient. Clinical evaluation of heart and thyroid showed that the mutation did not segregate with CHD in the familial case, nor did any of the seven mutation carriers have thyroid abnormalities. We tested the functional consequences of the p.A119S variation in a cellular context by performing transactivation assays with promoters relevant for both heart and thyroid development in rat heart derived H10 cells and HELA cells. There was no difference between wildtype NKX2-5 and p.A119S NKX2-5 in activation of the investigated promoters in both cell lines. Additionally, we reviewed the current literature on the topic, showing that there is no clear evidence for a major pathogenic role of NKX2-5 mutations in thyroid dysgenesis. In conclusion, our study demonstrates that p.A119S does not cause CHD or TD and that it is a rare variation that behaves equal to wildtype NKX2-5. Furthermore, given the wealth of published evidence, we suggest that NKX2-5 mutations do not play a major pathogenic role in thyroid dysgenesis, and that genetic testing of NKX2-5 in TD is not warranted.
Project description:This review reports the available evidence on the activation of the innate and adaptive branches of the immune system and the related inflammatory processes in epileptic disorders and the putative pathogenic role of inflammatory processes developing in the brain, as indicated by evidence from experimental and clinical research. Indeed, there is increasing knowledge supporting a role of specific inflammatory mediators and immune cells in the generation and recurrence of epileptic seizures, as well as in the associated neuropathology and comorbidities. Major challenges in this field remain: a better understanding of the key inflammatory pathogenic pathways activated in chronic epilepsy and during epileptogenesis, and how to counteract them efficiently without altering the homeostatic tissue repair function of inflammation. The relevance of this information for developing novel therapies will be highlighted.
Project description:TAFA chemokine like family member 4 (TAFA4, also named FAM19A4) is a member of the TAFA chemokine like ligand or FAM19A family, which includes TAFA1, TAFA2, TAFA3, TAFA4, and TAFA5 (or FAM19A1, FAM19A2, FAM19A3, FAM19A4, and FAM19A5). They are also referred to as neurokines and are involved in the regulation of a diverse range of cellular processes, including chemotaxis of macrophages, phagocytosis, and release of reactive oxygen species (ROS). TAFA4 is a marker of C-low-threshold mechanoreceptors and is expressed predominantly in nociceptors, such as dorsal root ganglia (DRG). TAFA4 has been implicated in the sensory perception of pain in the spinal cord. Mice with deficiency of TAFA4 demonstrate altered excitability in lamina IIi neurons in DRG in addition to increased mechanical and chemical nociception following inflammation or injury. As a secreted protein, TAFA4 binds to cell surface receptor formyl peptide receptor 1 (FPR1), a G protein-coupled receptor to mediate the chemoattraction of macrophages, phagocytosis, and the inflammatory profile of macrophages. It also interacts with cell surface neurexin to mediate signalling across the synapse. Further understanding the mechanisms by which this conserved protein family regulates diverse biological processes such as in neuronal functions, inflammation, and tissue fibrosis will help to design therapeutic targets for the treatment of TAFA related diseases such as spinal cord injury and neuro-inflammatory disorders.
Project description:Cancer is one of the most diagnosed diseases in developed countries. Inflammation is a common response to different stress situations including cancer and infection. In those processes, the family of mitogen-activated protein kinases (MAPKs) has an important role regulating cytokine secretion, proliferation, survival, and apoptosis, among others. MAPKs regulate a large number of extracellular signals upon a variety of physiological as well as pathological conditions. MAPKs activation is tightly regulated by phosphorylation/dephosphorylation events. In this regard, the dual-specificity phosphatase 10 (DUSP10) has been described as a MAPK phosphatase that negatively regulates p38 MAPK and c-Jun N-terminal kinase (JNK) in several cellular types and tissues. Several studies have proposed that extracellular signal-regulated kinase (ERK) can be also modulated by DUSP10. This suggests a complex role of DUSP10 on MAPKs regulation and, in consequence, its impact in a wide variety of responses involved in both cancer and inflammation. Here, we review DUSP10 function in cancerous and immune cells and studies in both mouse models and patients that establish a clear role of DUSP10 in different processes such as inflammation, immunity, and cancer.