Brain structural changes in cannabis dependence: association with MAGL.
Ontology highlight
ABSTRACT: Cannabis use is rising, yet there is poor understanding of biological processes that might link chronic cannabis use to brain structural abnormalities. To lend insight into this topic, we examined white matter microstructural integrity and gray matter cortical thickness/density differences between 89 individuals with cannabis dependence (CD) and 89 matched controls (64 males, 25 females in each group) from the Human Connectome Project. We tested whether cortical patterns for expression of genes relevant for cannabinoid signaling (from Allen Human Brain Atlas postmortem tissue) were associated with spatial patterns of cortical thickness/density differences in CD. CD had lower fractional anisotropy than controls in white matter bundles innervating posterior cingulate and parietal cortex, basal ganglia, and temporal cortex. The CD group also had significantly less gray matter thickness and density in precuneus, relative to controls. Sibling-pair analysis found support for causal and graded liability effects of cannabis on precuneus structure. Spatial patterns of gray matter differences in CD were significantly associated with regional differences in monoacylglycerol lipase (MAGL) expression in postmortem brain tissue, such that regions with higher MAGL expression (but not fatty-acid amide hydrolase or FAAH) were more vulnerable to cortical thinning. In sum, chronic cannabis use is associated with structural differences in white and gray matter, which was most prominent in precuneus and associated white matter tracts. Regions with high MAGL expression, and therefore with potentially physiologically restricted endogenous cannabinoid signaling, may be more vulnerable to the effects of chronic cannabis use on cortical thickness.
SUBMITTER: Manza P
PROVIDER: S-EPMC7200265 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA