Unknown

Dataset Information

0

Gut microbiota differently contributes to intestinal immune phenotype and systemic autoimmune progression in female and male lupus-prone mice.


ABSTRACT: The risk of developing systemic lupus erythematosus (SLE) is about 9 times higher in women as compared to men. Our recent report, which used (SWRxNZB) F1 (SNF1) mouse model of spontaneous lupus, showed a potential link between immune response initiated in the gut mucosa at juvenile age (sex hormone independent) and SLE susceptibility. Here, using this mouse model, we show that gut microbiota contributes differently to pro-inflammatory immune response in the intestine and autoimmune progression in lupus-prone males and females. We found that gut microbiota composition in male and female littermates are significantly different only at adult ages. However, depletion of gut microbes causes suppression of autoimmune progression only in females. In agreement, microbiota depletion suppressed the pro-inflammatory cytokine response of gut mucosa in juvenile and adult females. Nevertheless, microbiota from females and males showed, upon cross-transfer, contrasting abilities to modulate disease progression. Furthermore, orchidectomy (castration) not only caused changes in the composition of gut microbiota, but also a modest acceleration of autoimmune progression. Overall, our work shows that microbiota-dependent pro-inflammatory immune response in the gut mucosa of females initiated at juvenile ages and androgen-dependent protection of males contribute to gender differences in the intestinal immune phenotype and systemic autoimmune progression.

SUBMITTER: Johnson BM 

PROVIDER: S-EPMC7204266 | biostudies-literature | 2020 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Gut microbiota differently contributes to intestinal immune phenotype and systemic autoimmune progression in female and male lupus-prone mice.

Johnson Benjamin M BM   Gaudreau Marie-Claude MC   Gudi Radhika R   Brown Robert R   Gilkeson Gary G   Vasu Chenthamarakshan C  

Journal of autoimmunity 20200202


The risk of developing systemic lupus erythematosus (SLE) is about 9 times higher in women as compared to men. Our recent report, which used (SWRxNZB) F1 (SNF1) mouse model of spontaneous lupus, showed a potential link between immune response initiated in the gut mucosa at juvenile age (sex hormone independent) and SLE susceptibility. Here, using this mouse model, we show that gut microbiota contributes differently to pro-inflammatory immune response in the intestine and autoimmune progression i  ...[more]

Similar Datasets

| S-EPMC10874234 | biostudies-literature
| S-EPMC6936062 | biostudies-literature
| S-EPMC5216082 | biostudies-other
2021-04-01 | GSE167273 | GEO
| S-EPMC5861885 | biostudies-literature
| S-EPMC8419414 | biostudies-literature
| S-EPMC3032585 | biostudies-literature
2022-09-13 | GSE199662 | GEO
| S-EPMC8248531 | biostudies-literature
| S-EPMC1727185 | biostudies-other