Project description:With reference to a single mediator context, this brief report presents a model-based strategy to estimate counterfactual direct and indirect effects when the response variable is ordinal and the mediator is binary. Postulating a logistic regression model for the mediator and a cumulative logit model for the outcome, we present the exact parametric formulation of the causal effects, thereby extending previous work that only contained approximated results. The identification conditions are equivalent to the ones already established in the literature. The effects can be estimated by making use of standard statistical software and standard errors can be computed via a bootstrap algorithm. To make the methodology accessible, routines to implement the proposal in R are presented in the eAppendix; http://links.lww.com/EDE/B962. We also derive the natural effect model coherent with the postulated data-generating mechanism.
Project description:It is often of interest to decompose the total effect of an exposure into a component that acts on the outcome through some mediator and a component that acts independently through other pathways. Said another way, we are interested in the direct and indirect effects of the exposure on the outcome. Even if the exposure is randomly assigned, it is often infeasible to randomize the mediator, leaving the mediator-outcome confounding not fully controlled. We develop a sensitivity analysis technique that can bound the direct and indirect effects without parametric assumptions about the unmeasured mediator-outcome confounding.
Project description:Health researchers are often interested in assessing the direct effect of a treatment or exposure on an outcome variable, as well as its indirect (or mediation) effect through an intermediate variable (or mediator). For an outcome following a nonlinear model, the mediation formula may be used to estimate causally interpretable mediation effects. This method, like others, assumes that the mediator is observed. However, as is common in structural equations modeling, we may wish to consider a latent (unobserved) mediator. We follow a potential outcomes framework and assume a generalized structural equations model (GSEM). We provide maximum-likelihood estimation of GSEM parameters using an approximate Monte Carlo EM algorithm, coupled with a mediation formula approach to estimate natural direct and indirect effects. The method relies on an untestable sequential ignorability assumption; we assess robustness to this assumption by adapting a recently proposed method for sensitivity analysis. Simulation studies show good properties of the proposed estimators in plausible scenarios. Our method is applied to a study of the effect of mother education on occurrence of adolescent dental caries, in which we examine possible mediation through latent oral health behavior.
Project description:The causal inference literature has provided definitions of direct and indirect effects based on counterfactuals that generalize the approach found in the social science literature. However, these definitions presuppose well-defined hypothetical interventions on the mediator. In many settings, there may be multiple ways to fix the mediator to a particular value, and these various hypothetical interventions may have very different implications for the outcome of interest. In this paper, we consider mediation analysis when multiple versions of the mediator are present. Specifically, we consider the problem of attempting to decompose a total effect of an exposure on an outcome into the portion through the intermediate and the portion through other pathways. We consider the setting in which there are multiple versions of the mediator but the investigator has access only to data on the particular measurement, not information on which version of the mediator may have brought that value about. We show that the quantity that is estimated as a natural indirect effect using only the available data does indeed have an interpretation as a particular type of mediated effect; however, the quantity estimated as a natural direct effect, in fact, captures both a true direct effect and an effect of the exposure on the outcome mediated through the effect of the version of the mediator that is not captured by the mediator measurement. The results are illustrated using 2 examples from the literature, one in which the versions of the mediator are unknown and another in which the mediator itself has been dichotomized.
Project description:Mediation analysis is a popular approach to examine the extent to which the effect of an exposure on an outcome is through an intermediate variable (mediator) and the extent to which the effect is direct. When the mediator is mis-measured, the validity of mediation analysis can be severely undermined. In this paper, we first study the bias of classical, non-differential measurement error on a continuous mediator in the estimation of direct and indirect causal effects in generalized linear models when the outcome is either continuous or discrete and exposure-mediator interaction may be present. Our theoretical results as well as a numerical study demonstrate that in the presence of non-linearities, the bias of naive estimators for direct and indirect effects that ignore measurement error can take unintuitive directions. We then develop methods to correct for measurement error. Three correction approaches using method of moments, regression calibration, and SIMEX are compared. We apply the proposed method to the Massachusetts General Hospital lung cancer study to evaluate the effect of genetic variants mediated through smoking on lung cancer risk.
Project description:An important recent development in mediation analysis is the use of causal mediation analysis. Causal mediation analysis decomposes the total exposure effect into causal direct and indirect effects in the presence of exposure-mediator interaction. However, in practice, traditional mediation analysis is still most widely used. The aim of this paper is to demonstrate the similarities and differences between the causal and traditional estimators for mediation models with a continuous mediator, a binary outcome, and exposure-mediator interaction. A real-life data example, analytical comparisons, and a simulation study were used to demonstrate the similarities and differences between the traditional and causal estimators. The causal and traditional estimators provide similar indirect effect estimates, but different direct and total effect estimates. Traditional mediation analysis may only be used when conditional direct effect estimates are of interest. Causal mediation analysis is the generally preferred method as its casual effect estimates help unravel causal mechanisms.
Project description:BackgroundMediation analyses have been a popular approach to investigate the effect of an exposure on an outcome through a mediator. Mediation models with multiple mediators have been proposed for continuous and dichotomous outcomes. However, development of multimediator models for survival outcomes is still limited.MethodsWe present methods for multimediator analyses using three survival models: Aalen additive hazard models, Cox proportional hazard models, and semiparametric probit models. Effects through mediators can be characterized by path-specific effects, for which definitions and identifiability assumptions are provided. We derive closed-form expressions for path-specific effects for the three models, which are intuitively interpreted using a causal diagram.ResultsMediation analyses using Cox models under the rare-outcome assumption and Aalen additive hazard models consider effects on log hazard ratio and hazard difference, respectively; analyses using semiparametric probit models consider effects on difference in transformed survival time and survival probability. The three models were applied to a hepatitis study where we investigated effects of hepatitis C on liver cancer incidence mediated through baseline and/or follow-up hepatitis B viral load. The three methods show consistent results on respective effect scales, which suggest an adverse estimated effect of hepatitis C on liver cancer not mediated through hepatitis B, and a protective estimated effect mediated through the baseline (and possibly follow-up) of hepatitis B viral load.ConclusionsCausal mediation analyses of survival outcome with multiple mediators are developed for additive hazard and proportional hazard and probit models with utility demonstrated in a hepatitis study.
Project description:This paper demonstrates the utility of latent classes in evaluating the effect of an intervention on an outcome through multiple indicators of mediation. These indicators are observed intermediate variables that identify an underlying latent class mediator, with each class representing a different mediating pathway. The use of a latent class mediator allows us to avoid modeling the complex interactions between the multiple indicators and ensures the decomposition of the total mediating effects into additive effects from individual mediating pathways, a desirable feature for evaluating multiple indicators of mediation. This method is suitable when the goal is to estimate the total mediating effects that can be decomposed into the additive effects of distinct mediating pathways. Each indicator may be involved in multiple mediation pathways and at the same time multiple indicators may contribute to a single mediating pathway. The relative importance of each pathway may vary across subjects. We applied this method to the analysis of the first 6 months of data from a 2-year clustered randomized trial for adults in their first episode of schizophrenia. Four indicators of mediation are considered: individual resiliency training; family psychoeducation; supported education and employment; and a structural assessment for medication. The improvement in symptoms was found to be mediated by the latent class mediator derived from these four service indicators. Simulation studies were conducted to assess the performance of the proposed model and showed that the simultaneous estimation through the maximum likelihood yielded little bias when the entropy of the indicators was high.
Project description:Mediation analysis is an approach for assessing the direct and indirect effects of an initial variable on an outcome through a mediator. In practice, mediation models can involve a censored mediator (eg, a woman's age at menopause). The current research for mediation analysis with a censored mediator focuses on scenarios where outcomes are continuous. However, the outcomes can be binary (eg, type 2 diabetes). Another challenge when analyzing such a mediation model is to use data from a case-control study, which results in biased estimations for the initial variable-mediator association if a standard approach is directly applied. In this study, we propose an approach (denoted as MAC-CC) to analyze the mediation model with a censored mediator given data from a case-control study, based on the semiparametric accelerated failure time model along with a pseudo-likelihood function. We adapted the measures for assessing the indirect and direct effects using counterfactual definitions. We conducted simulation studies to investigate the performance of MAC-CC and compared it to those of the naïve approach and the complete-case approach. MAC-CC accurately estimates the coefficients of different paths, the indirect effects, and the proportions of the total effects mediated. We applied the proposed and existing approaches to the mediation study of genetic variants, a woman's age at menopause, and type 2 diabetes based on a case-control study of type 2 diabetes. Our results indicate that there is no mediating effect from the age at menopause on the association between the genetic variants and type 2 diabetes.
Project description:Mixed models are a useful way of analysing longitudinal data. Random effects terms allow modelling of patient specific deviations from the overall trend over time. Correlation between repeated measurements are captured by specifying a joint distribution for all random effects in a model. Typically, this joint distribution is assumed to be a multivariate normal distribution. For Gaussian outcomes misspecification of the random effects distribution usually has little impact. However, when the outcome is discrete (e.g. counts or binary outcomes) generalised linear mixed models (GLMMs) are used to analyse longitudinal trends. Opinion is divided about how robust GLMMs are to misspecification of the random effects. Previous work explored the impact of random effects misspecification on the bias of model parameters in single outcome GLMMs. Accepting that these model parameters may be biased, we investigate whether this affects our ability to classify patients into clinical groups using a longitudinal discriminant analysis. We also consider multiple outcomes, which can significantly increase the dimensions of the random effects distribution when modelled simultaneously. We show that when there is severe departure from normality, more flexible mixture distributions can give better classification accuracy. However, in many cases, wrongly assuming a single multivariate normal distribution has little impact on classification accuracy.